自适应目标识别方法在空中监视中的应用

S. Baik, P. Pachowicz
{"title":"自适应目标识别方法在空中监视中的应用","authors":"S. Baik, P. Pachowicz","doi":"10.1109/ICIF.2002.1021217","DOIUrl":null,"url":null,"abstract":"The paper presents an application of an adaptive object recognition technique to the detection and tracking of geographical features on aerial images. The paper advocates the necessity of the continuous image analysis for the classification of changing geographical features for aerial surveillance. The introduced technique includes: 1) extraction of geographical features by texture-based image analysis, 2) model learning and closed-loop model adaptation to the perceived changes in image characteristics, 3)recognition of interested target areas, and 4) a feedback reinforcement mechanism for model adaptation. Experimental results are presented for image sequences, along a path on an aerial image established for the aerial surveillance.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of adaptive object recognition approach to aerial surveillance\",\"authors\":\"S. Baik, P. Pachowicz\",\"doi\":\"10.1109/ICIF.2002.1021217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an application of an adaptive object recognition technique to the detection and tracking of geographical features on aerial images. The paper advocates the necessity of the continuous image analysis for the classification of changing geographical features for aerial surveillance. The introduced technique includes: 1) extraction of geographical features by texture-based image analysis, 2) model learning and closed-loop model adaptation to the perceived changes in image characteristics, 3)recognition of interested target areas, and 4) a feedback reinforcement mechanism for model adaptation. Experimental results are presented for image sequences, along a path on an aerial image established for the aerial surveillance.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种自适应目标识别技术在航空图像地理特征检测与跟踪中的应用。本文提出了连续图像分析对航空监视变化地理特征进行分类的必要性。引入的技术包括:1)基于纹理的图像特征提取;2)模型学习和闭环模型自适应感知图像特征的变化;3)感兴趣目标区域的识别;4)模型自适应的反馈强化机制。实验结果显示了图像序列,沿着为空中监视而建立的航拍图像的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of adaptive object recognition approach to aerial surveillance
The paper presents an application of an adaptive object recognition technique to the detection and tracking of geographical features on aerial images. The paper advocates the necessity of the continuous image analysis for the classification of changing geographical features for aerial surveillance. The introduced technique includes: 1) extraction of geographical features by texture-based image analysis, 2) model learning and closed-loop model adaptation to the perceived changes in image characteristics, 3)recognition of interested target areas, and 4) a feedback reinforcement mechanism for model adaptation. Experimental results are presented for image sequences, along a path on an aerial image established for the aerial surveillance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1