自动驾驶车辆路径跟踪的条件积分自抗扰控制器

Zixuan Qian, Zhuoping Yu, L. Xiong, Zhiqiang Fu, Dequan Zeng
{"title":"自动驾驶车辆路径跟踪的条件积分自抗扰控制器","authors":"Zixuan Qian, Zhuoping Yu, L. Xiong, Zhiqiang Fu, Dequan Zeng","doi":"10.1109/CVCI51460.2020.9338668","DOIUrl":null,"url":null,"abstract":"Aim at rejecting uncertainty disturbance and actuator saturation, a path tracking method is proposed for autonomous driving vehicles, which is implement by active disturbance rejection controller (ADRC) with conditional integration. Firstly, a kinematic-dynamic vehicle model is deduced for describing path tracking process. Secondly, a nonlinear extended state observer is designed to observe the uncertainty disturbance, such as external disturbance and parameter uncertainties. Finally, in order to eliminate error and reject disturbance while resisting actuator saturation, a conditional integration is developed as feedback control low. The test results of lane changing scenarios show that the proposed algorithm can track the desired path quickly and accurately compared with PID and ADRC.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional Integration Active Disturbance Rejection Controller for Path Tracking of Autonomous Driving Vehicles\",\"authors\":\"Zixuan Qian, Zhuoping Yu, L. Xiong, Zhiqiang Fu, Dequan Zeng\",\"doi\":\"10.1109/CVCI51460.2020.9338668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim at rejecting uncertainty disturbance and actuator saturation, a path tracking method is proposed for autonomous driving vehicles, which is implement by active disturbance rejection controller (ADRC) with conditional integration. Firstly, a kinematic-dynamic vehicle model is deduced for describing path tracking process. Secondly, a nonlinear extended state observer is designed to observe the uncertainty disturbance, such as external disturbance and parameter uncertainties. Finally, in order to eliminate error and reject disturbance while resisting actuator saturation, a conditional integration is developed as feedback control low. The test results of lane changing scenarios show that the proposed algorithm can track the desired path quickly and accurately compared with PID and ADRC.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对不确定性干扰和执行器饱和问题,提出了一种基于条件积分的自抗扰控制器(ADRC)的自动驾驶车辆路径跟踪方法。首先,推导了描述路径跟踪过程的车辆运动学模型。其次,设计了非线性扩展状态观测器来观察不确定性扰动,如外部扰动和参数不确定性;最后,为了在抗执行器饱和的同时消除误差和抑制干扰,提出了一种条件积分的反馈控制方法。换道场景的测试结果表明,与PID和自抗扰控制器相比,该算法能够快速准确地跟踪所需路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditional Integration Active Disturbance Rejection Controller for Path Tracking of Autonomous Driving Vehicles
Aim at rejecting uncertainty disturbance and actuator saturation, a path tracking method is proposed for autonomous driving vehicles, which is implement by active disturbance rejection controller (ADRC) with conditional integration. Firstly, a kinematic-dynamic vehicle model is deduced for describing path tracking process. Secondly, a nonlinear extended state observer is designed to observe the uncertainty disturbance, such as external disturbance and parameter uncertainties. Finally, in order to eliminate error and reject disturbance while resisting actuator saturation, a conditional integration is developed as feedback control low. The test results of lane changing scenarios show that the proposed algorithm can track the desired path quickly and accurately compared with PID and ADRC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation Collision-avoidance steering control for autonomous vehicles using fast non-singular terminal sliding mode Energy management strategy based on velocity prediction for parallel plug-in hybrid electric bus Constrained Containment Control of Agents Network with Switching Topologies Multi-parameter driver intention recognition based on neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1