新药物设计中自主分子生成的深度强化学习和对接模拟

Hao Liu, Qian Wang, Xiaotong Hu
{"title":"新药物设计中自主分子生成的深度强化学习和对接模拟","authors":"Hao Liu, Qian Wang, Xiaotong Hu","doi":"10.1145/3469877.3497694","DOIUrl":null,"url":null,"abstract":"In medicinal chemistry programs, it is key to design and make compounds that are efficacious and safe. In this study, we developed a new deep Reinforcement learning-based compounds molecular generation method. Because chemical space is impractically large, and many existing generation models generate molecules that lack effectiveness, novelty and unsatisfactory molecular properties. Our proposed method-DeepRLDS, which integrates transformer network, balanced binary tree search and docking simulation based on super large-scale supercomputing, can solve these problems well. Experiments show that more than 96 of the generated molecules are chemically valid, 99 of the generated molecules are chemically novelty, the generated molecules have satisfactory molecular properties and possess a broader chemical space distribution.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Reinforcement Learning and Docking Simulations for autonomous molecule generation in de novo Drug Design\",\"authors\":\"Hao Liu, Qian Wang, Xiaotong Hu\",\"doi\":\"10.1145/3469877.3497694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medicinal chemistry programs, it is key to design and make compounds that are efficacious and safe. In this study, we developed a new deep Reinforcement learning-based compounds molecular generation method. Because chemical space is impractically large, and many existing generation models generate molecules that lack effectiveness, novelty and unsatisfactory molecular properties. Our proposed method-DeepRLDS, which integrates transformer network, balanced binary tree search and docking simulation based on super large-scale supercomputing, can solve these problems well. Experiments show that more than 96 of the generated molecules are chemically valid, 99 of the generated molecules are chemically novelty, the generated molecules have satisfactory molecular properties and possess a broader chemical space distribution.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3497694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3497694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在药物化学项目中,设计和制造有效和安全的化合物是关键。在这项研究中,我们开发了一种新的基于深度强化学习的化合物分子生成方法。由于化学空间大得不切实际,现有的许多生成模型生成的分子缺乏有效性、新颖性和令人不满意的分子性质。我们提出的deeprlds方法将变压器网络、平衡二叉树搜索和基于超大规模超级计算的对接仿真相结合,可以很好地解决这些问题。实验表明,所合成的分子中96个以上具有化学有效性,99个以上具有化学新颖性,所合成的分子具有令人满意的分子性质,具有更广泛的化学空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning and Docking Simulations for autonomous molecule generation in de novo Drug Design
In medicinal chemistry programs, it is key to design and make compounds that are efficacious and safe. In this study, we developed a new deep Reinforcement learning-based compounds molecular generation method. Because chemical space is impractically large, and many existing generation models generate molecules that lack effectiveness, novelty and unsatisfactory molecular properties. Our proposed method-DeepRLDS, which integrates transformer network, balanced binary tree search and docking simulation based on super large-scale supercomputing, can solve these problems well. Experiments show that more than 96 of the generated molecules are chemically valid, 99 of the generated molecules are chemically novelty, the generated molecules have satisfactory molecular properties and possess a broader chemical space distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1