模糊规则权值的粒子群优化

Tianhua Chen, Q. Shen, P. Su, C. Shang
{"title":"模糊规则权值的粒子群优化","authors":"Tianhua Chen, Q. Shen, P. Su, C. Shang","doi":"10.1109/UKCI.2014.6930170","DOIUrl":null,"url":null,"abstract":"The most challenging problem in the design of fuzzy rule-based classification systems is the construction of a fuzzy rule base for the target problem. Much research has focused on generating and adjusting antecedent fuzzy sets. In many cases, initial fuzzy sets, each of which has a linguistic meaning, are predefined by domain experts and are thus required to be maintained in order to ensure interpretability of any subsequent inference results. However, learning fuzzy rules using fixed fuzzy quantity space without any quantification will restrict the accuracy of the resulting rules. Fortunately, adjusting the weight of a fuzzy if-then rule may help improve classification accuracy without degrading the interpretability. There have been different proposals for fuzzy rule weight tuning through the use of various heuristics with limited success. This paper proposes an alternative approach using Particle Swarm Optimisation in the search of a set of optimal rule weights, which can entail high classification accuracy. The proposed method is initially tested on the iris data set with regard to different predefined fuzzy partitions of linguistic variables to assess its performance. Experimental results demonstrate that the proposed approach is not sensitive to the predefined fuzzy partitions, and can boost classification performance especially when a coarse fuzzy partition is given.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Refinement of fuzzy rule weights with particle swarm optimisation\",\"authors\":\"Tianhua Chen, Q. Shen, P. Su, C. Shang\",\"doi\":\"10.1109/UKCI.2014.6930170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most challenging problem in the design of fuzzy rule-based classification systems is the construction of a fuzzy rule base for the target problem. Much research has focused on generating and adjusting antecedent fuzzy sets. In many cases, initial fuzzy sets, each of which has a linguistic meaning, are predefined by domain experts and are thus required to be maintained in order to ensure interpretability of any subsequent inference results. However, learning fuzzy rules using fixed fuzzy quantity space without any quantification will restrict the accuracy of the resulting rules. Fortunately, adjusting the weight of a fuzzy if-then rule may help improve classification accuracy without degrading the interpretability. There have been different proposals for fuzzy rule weight tuning through the use of various heuristics with limited success. This paper proposes an alternative approach using Particle Swarm Optimisation in the search of a set of optimal rule weights, which can entail high classification accuracy. The proposed method is initially tested on the iris data set with regard to different predefined fuzzy partitions of linguistic variables to assess its performance. Experimental results demonstrate that the proposed approach is not sensitive to the predefined fuzzy partitions, and can boost classification performance especially when a coarse fuzzy partition is given.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于模糊规则的分类系统设计中最具挑战性的问题是目标问题的模糊规则库的构建。许多研究都集中在生成和调整先验模糊集上。在许多情况下,初始模糊集(每个模糊集都有一个语言意义)是由领域专家预定义的,因此需要维护,以确保任何后续推理结果的可解释性。然而,使用固定的模糊量空间学习模糊规则而不进行量化会限制生成规则的准确性。幸运的是,调整模糊if-then规则的权重可能有助于在不降低可解释性的情况下提高分类准确性。通过使用各种启发式方法对模糊规则权重进行调整有不同的建议,但成功率有限。本文提出了一种使用粒子群优化方法来搜索一组最优规则权重的替代方法,该方法可以保证较高的分类精度。在虹膜数据集上对不同语言变量的预定义模糊分区进行了初步测试,以评估其性能。实验结果表明,该方法对预定义的模糊划分不敏感,特别是在给出粗糙模糊划分时,可以提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refinement of fuzzy rule weights with particle swarm optimisation
The most challenging problem in the design of fuzzy rule-based classification systems is the construction of a fuzzy rule base for the target problem. Much research has focused on generating and adjusting antecedent fuzzy sets. In many cases, initial fuzzy sets, each of which has a linguistic meaning, are predefined by domain experts and are thus required to be maintained in order to ensure interpretability of any subsequent inference results. However, learning fuzzy rules using fixed fuzzy quantity space without any quantification will restrict the accuracy of the resulting rules. Fortunately, adjusting the weight of a fuzzy if-then rule may help improve classification accuracy without degrading the interpretability. There have been different proposals for fuzzy rule weight tuning through the use of various heuristics with limited success. This paper proposes an alternative approach using Particle Swarm Optimisation in the search of a set of optimal rule weights, which can entail high classification accuracy. The proposed method is initially tested on the iris data set with regard to different predefined fuzzy partitions of linguistic variables to assess its performance. Experimental results demonstrate that the proposed approach is not sensitive to the predefined fuzzy partitions, and can boost classification performance especially when a coarse fuzzy partition is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PermGA algorithm for a sequential optimal space filling DoE framework Modeling neural plasticity in echo state networks for time series prediction Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation Adaptive mutation in dynamic environments Automatic image annotation with long distance spatial-context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1