{"title":"纳米点型浮栅超细场效应管的电荷效应","authors":"T. Ban, S. Migita, Y. Uraoka, Shin-ichi Yamamoto","doi":"10.1109/AM-FPD.2016.7543607","DOIUrl":null,"url":null,"abstract":"Metal nanoparticles (NPs) embedded in junctionless field-effect transistors (JL-FETs) with a length of 3.6 nm are fabricated and demonstrated. The anisotropic wet etching of a silicon-on-insulator (SOI) substrate was utilized to form V-grooves and to define nanometer-scale channel. Metal NPs are selectively placed onto bottom of V-groove using the Bio nano process (BNP). The JL-FET is applied to floating gate memory and used to investigate an impact on the short channel by charge trap of NPs. Low-voltage operation and broad threshold voltage shift as memory behavior are appeared in 3.6 nm channel length. It is expected that the JL-FETs can overcome the scaling limitations in floating gate memory, while the charge trap cause major problems in the sub 10 nm region.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge effects of ultrafine FET with nanodot type floating gate\",\"authors\":\"T. Ban, S. Migita, Y. Uraoka, Shin-ichi Yamamoto\",\"doi\":\"10.1109/AM-FPD.2016.7543607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal nanoparticles (NPs) embedded in junctionless field-effect transistors (JL-FETs) with a length of 3.6 nm are fabricated and demonstrated. The anisotropic wet etching of a silicon-on-insulator (SOI) substrate was utilized to form V-grooves and to define nanometer-scale channel. Metal NPs are selectively placed onto bottom of V-groove using the Bio nano process (BNP). The JL-FET is applied to floating gate memory and used to investigate an impact on the short channel by charge trap of NPs. Low-voltage operation and broad threshold voltage shift as memory behavior are appeared in 3.6 nm channel length. It is expected that the JL-FETs can overcome the scaling limitations in floating gate memory, while the charge trap cause major problems in the sub 10 nm region.\",\"PeriodicalId\":422453,\"journal\":{\"name\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AM-FPD.2016.7543607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge effects of ultrafine FET with nanodot type floating gate
Metal nanoparticles (NPs) embedded in junctionless field-effect transistors (JL-FETs) with a length of 3.6 nm are fabricated and demonstrated. The anisotropic wet etching of a silicon-on-insulator (SOI) substrate was utilized to form V-grooves and to define nanometer-scale channel. Metal NPs are selectively placed onto bottom of V-groove using the Bio nano process (BNP). The JL-FET is applied to floating gate memory and used to investigate an impact on the short channel by charge trap of NPs. Low-voltage operation and broad threshold voltage shift as memory behavior are appeared in 3.6 nm channel length. It is expected that the JL-FETs can overcome the scaling limitations in floating gate memory, while the charge trap cause major problems in the sub 10 nm region.