基于Sad和改进的人口普查转换的高效双目立体匹配

Yun Zhang, Wenxiang Chen, Han Liu, Jinhua Liu, Hui Du
{"title":"基于Sad和改进的人口普查转换的高效双目立体匹配","authors":"Yun Zhang, Wenxiang Chen, Han Liu, Jinhua Liu, Hui Du","doi":"10.1109/ICMLC48188.2019.8949324","DOIUrl":null,"url":null,"abstract":"Binocular stereo matching aims to obtain disparities from two very close views. Existing stereo matching methods may cause false matching when there are much image noise and disparity discontinuities. This paper proposes a novel binocular stereo matching algorithm based on SAD and improved Census transformation. We first perform improved Census transformation, and then we get the matching costs by combining SAD and improved Census transformation. Finally we cluster the matching costs and calculate the disparities. To generate better disparities, we further propose the improved bilateral and selective filters to enhance the accuracy of disparities. Experimental results show that our binocular stereo matching can produce more accurate and complete disparities, and it works well in complex scenes with irregular shapes and more objects, thus it has wide applications in stereoscopic image processing.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Binocular Stereo Matching Based on Sad and Improved Census Transformation\",\"authors\":\"Yun Zhang, Wenxiang Chen, Han Liu, Jinhua Liu, Hui Du\",\"doi\":\"10.1109/ICMLC48188.2019.8949324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binocular stereo matching aims to obtain disparities from two very close views. Existing stereo matching methods may cause false matching when there are much image noise and disparity discontinuities. This paper proposes a novel binocular stereo matching algorithm based on SAD and improved Census transformation. We first perform improved Census transformation, and then we get the matching costs by combining SAD and improved Census transformation. Finally we cluster the matching costs and calculate the disparities. To generate better disparities, we further propose the improved bilateral and selective filters to enhance the accuracy of disparities. Experimental results show that our binocular stereo matching can produce more accurate and complete disparities, and it works well in complex scenes with irregular shapes and more objects, thus it has wide applications in stereoscopic image processing.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

双目立体匹配的目的是获得两个非常接近的视图的差异。现有的立体匹配方法在存在较大的图像噪声和视差不连续时,可能会导致匹配错误。提出了一种基于SAD和改进的Census变换的双目立体匹配算法。首先进行改进的Census转换,然后结合SAD和改进的Census转换得到匹配成本。最后对匹配代价进行聚类并计算差异。为了产生更好的差值,我们进一步提出了改进的双边和选择性滤波器来提高差值的准确性。实验结果表明,双目立体匹配能产生更精确、更完整的视差,并且在形状不规则、物体较多的复杂场景中效果良好,在立体图像处理中具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Binocular Stereo Matching Based on Sad and Improved Census Transformation
Binocular stereo matching aims to obtain disparities from two very close views. Existing stereo matching methods may cause false matching when there are much image noise and disparity discontinuities. This paper proposes a novel binocular stereo matching algorithm based on SAD and improved Census transformation. We first perform improved Census transformation, and then we get the matching costs by combining SAD and improved Census transformation. Finally we cluster the matching costs and calculate the disparities. To generate better disparities, we further propose the improved bilateral and selective filters to enhance the accuracy of disparities. Experimental results show that our binocular stereo matching can produce more accurate and complete disparities, and it works well in complex scenes with irregular shapes and more objects, thus it has wide applications in stereoscopic image processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1