解决在云中执行大规模计算集群的挑战

Brandon Posey, Christopher Gropp, Boyd Wilson, Boyd McGeachie, S. Padhi, Alexander Herzog, A. Apon
{"title":"解决在云中执行大规模计算集群的挑战","authors":"Brandon Posey, Christopher Gropp, Boyd Wilson, Boyd McGeachie, S. Padhi, Alexander Herzog, A. Apon","doi":"10.1109/CCGRID.2018.00040","DOIUrl":null,"url":null,"abstract":"A major limitation for time-to-science can be the lack of available computing resources. Depending on the capacity of resources, executing an application suite with hundreds of thousands of jobs can take weeks when resources are in high demand. We describe how we dynamically provision a large scale high performance computing cluster of more than one million cores utilizing Amazon Web Services (AWS). We discuss the trade-offs, challenges, and solutions associated with creating such a large scale cluster with commercial cloud resources. We utilize our large scale cluster to study a parameter sweep workflow composed of message-passing parallel topic modeling jobs on multiple datasets. At peak, we achieve a simultaneous core count of 1,119,196 vCPUs across nearly 50,000 instances, and are able to execute almost half a million jobs within two hours utilizing AWS Spot Instances in a single AWS region. Our solutions to the challenges and trade-offs have broad application to the lifecycle management of similar clusters on other commercial clouds.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Addressing the Challenges of Executing a Massive Computational Cluster in the Cloud\",\"authors\":\"Brandon Posey, Christopher Gropp, Boyd Wilson, Boyd McGeachie, S. Padhi, Alexander Herzog, A. Apon\",\"doi\":\"10.1109/CCGRID.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major limitation for time-to-science can be the lack of available computing resources. Depending on the capacity of resources, executing an application suite with hundreds of thousands of jobs can take weeks when resources are in high demand. We describe how we dynamically provision a large scale high performance computing cluster of more than one million cores utilizing Amazon Web Services (AWS). We discuss the trade-offs, challenges, and solutions associated with creating such a large scale cluster with commercial cloud resources. We utilize our large scale cluster to study a parameter sweep workflow composed of message-passing parallel topic modeling jobs on multiple datasets. At peak, we achieve a simultaneous core count of 1,119,196 vCPUs across nearly 50,000 instances, and are able to execute almost half a million jobs within two hours utilizing AWS Spot Instances in a single AWS region. Our solutions to the challenges and trade-offs have broad application to the lifecycle management of similar clusters on other commercial clouds.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究时间的一个主要限制可能是缺乏可用的计算资源。根据资源的容量,当资源需求量很大时,执行具有数十万个作业的应用程序套件可能需要数周时间。我们描述了如何利用Amazon Web Services (AWS)动态地提供超过一百万核的大规模高性能计算集群。我们将讨论与使用商业云资源创建如此大规模集群相关的权衡、挑战和解决方案。我们利用我们的大规模集群研究了一个由多个数据集上的消息传递并行主题建模作业组成的参数扫描工作流。在峰值时,我们在近50,000个实例中实现了1,119,196个vcpu的同时核心计数,并且能够在单个AWS区域中利用AWS Spot实例在两小时内执行近50万个作业。我们针对挑战和权衡的解决方案广泛应用于其他商业云上类似集群的生命周期管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing the Challenges of Executing a Massive Computational Cluster in the Cloud
A major limitation for time-to-science can be the lack of available computing resources. Depending on the capacity of resources, executing an application suite with hundreds of thousands of jobs can take weeks when resources are in high demand. We describe how we dynamically provision a large scale high performance computing cluster of more than one million cores utilizing Amazon Web Services (AWS). We discuss the trade-offs, challenges, and solutions associated with creating such a large scale cluster with commercial cloud resources. We utilize our large scale cluster to study a parameter sweep workflow composed of message-passing parallel topic modeling jobs on multiple datasets. At peak, we achieve a simultaneous core count of 1,119,196 vCPUs across nearly 50,000 instances, and are able to execute almost half a million jobs within two hours utilizing AWS Spot Instances in a single AWS region. Our solutions to the challenges and trade-offs have broad application to the lifecycle management of similar clusters on other commercial clouds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1