语义推理的词义消歧

Xinda Wang, Xuri Tang, Weiguang Qu, Min Gu
{"title":"语义推理的词义消歧","authors":"Xinda Wang, Xuri Tang, Weiguang Qu, Min Gu","doi":"10.1109/BESC.2017.8256391","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for unsupervised Word Sense Disambiguation to bypass the knowledge bottleneck faced by supervised approaches. By simulating the semantic inference process performed by human language users, the algorithm makes use of a thesaurus to obtain potential substitute words for the target word in a sentence, builds substitute constructs by replacing the target word with substitute words, uses large-scale dependency parsed corpora to calculate the likelihood of the substitute constructs, and then obtain the best substitute word which help specify the sense of the target word in the sentence. Experiments with WordNet 2.1 and the corpora English Gigawords on the lexical sample task in SemEval-2007 show that the algorithm achieves the-state-of-art accuracy for both nouns and verbs, which are 3–5 percent higher than the best unsupervised system in SemEval-2007, given the condition that the knowledge source provides sufficient information.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Word sense disambiguation by semantic inference\",\"authors\":\"Xinda Wang, Xuri Tang, Weiguang Qu, Min Gu\",\"doi\":\"10.1109/BESC.2017.8256391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm for unsupervised Word Sense Disambiguation to bypass the knowledge bottleneck faced by supervised approaches. By simulating the semantic inference process performed by human language users, the algorithm makes use of a thesaurus to obtain potential substitute words for the target word in a sentence, builds substitute constructs by replacing the target word with substitute words, uses large-scale dependency parsed corpora to calculate the likelihood of the substitute constructs, and then obtain the best substitute word which help specify the sense of the target word in the sentence. Experiments with WordNet 2.1 and the corpora English Gigawords on the lexical sample task in SemEval-2007 show that the algorithm achieves the-state-of-art accuracy for both nouns and verbs, which are 3–5 percent higher than the best unsupervised system in SemEval-2007, given the condition that the knowledge source provides sufficient information.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种无监督的词义消歧算法,绕过了有监督方法所面临的知识瓶颈。该算法通过模拟人类语言使用者的语义推理过程,利用同义词库获取句子中目标词的潜在替代词,用替代词代替目标词构建替代结构,利用大规模依赖解析语料库计算替代结构的似然性,从而获得有助于指定句子中目标词意义的最佳替代词。在SemEval-2007中的词汇样本任务上使用WordNet 2.1和语料库英语Gigawords进行的实验表明,在知识来源提供足够信息的条件下,该算法在名词和动词方面都达到了最先进的精度,比SemEval-2007中最好的无监督系统高出3 - 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Word sense disambiguation by semantic inference
This paper proposes an algorithm for unsupervised Word Sense Disambiguation to bypass the knowledge bottleneck faced by supervised approaches. By simulating the semantic inference process performed by human language users, the algorithm makes use of a thesaurus to obtain potential substitute words for the target word in a sentence, builds substitute constructs by replacing the target word with substitute words, uses large-scale dependency parsed corpora to calculate the likelihood of the substitute constructs, and then obtain the best substitute word which help specify the sense of the target word in the sentence. Experiments with WordNet 2.1 and the corpora English Gigawords on the lexical sample task in SemEval-2007 show that the algorithm achieves the-state-of-art accuracy for both nouns and verbs, which are 3–5 percent higher than the best unsupervised system in SemEval-2007, given the condition that the knowledge source provides sufficient information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IBM data governance solutions Causalities among momentum, transparency and media in China Can Bayesian poisson tensor factorization automatically extract interesting events from massive media reports? The influence of big data and informatization on tourism industry Discover social relations and activities from ancient Chinese history book Zuo Zhuan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1