协作自适应巡航控制(CACC)攻击分析

R. V. D. Heijden, Thomas Lukaseder, F. Kargl
{"title":"协作自适应巡航控制(CACC)攻击分析","authors":"R. V. D. Heijden, Thomas Lukaseder, F. Kargl","doi":"10.1109/VNC.2017.8275598","DOIUrl":null,"url":null,"abstract":"Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Analyzing attacks on cooperative adaptive cruise control (CACC)\",\"authors\":\"R. V. D. Heijden, Thomas Lukaseder, F. Kargl\",\"doi\":\"10.1109/VNC.2017.8275598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.\",\"PeriodicalId\":101592,\"journal\":{\"name\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNC.2017.8275598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)是车辆自组织网络(VANETs)的一种驾驶应用,有望通过车辆之间的合作行为实现更高效、更快速的交通。在CACC中,车辆交换信息,这是部分自动驾驶的基础;然而,这种对合作的依赖需要抵御攻击和其他形式的不当行为。在本文中,我们通过量化攻击影响,提出了一个严格的攻击者模型和一个评估框架,为同时比较控制器弹性和攻击有效性提供了必要的工具。尽管所分析的三种控制器的弹性之间存在显着差异,但我们表明,每种控制器都可以通过干扰或数据注入有效且容易地进行攻击。我们的研究结果表明,错误行为检测和具有优雅退化的弹性控制算法的结合是安全和安全排的必要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing attacks on cooperative adaptive cruise control (CACC)
Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of WPT communication system based on SAE J2847 standard for electric vehicle Study of the impact of pseudonym change mechanisms on vehicular safety Poster: Characterizing driving behaviors through a car simulation platform Demo: MAMBA: A platform for personalised multimodal trip planning Effects of colluding Sybil nodes in message falsification attacks for vehicular platooning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1