全记忆脉冲神经网络电路模拟器

V. Vincan, Jovana Zoranović, N. Samardzic, S. Dautovic
{"title":"全记忆脉冲神经网络电路模拟器","authors":"V. Vincan, Jovana Zoranović, N. Samardzic, S. Dautovic","doi":"10.1109/mocast54814.2022.9837753","DOIUrl":null,"url":null,"abstract":"In this paper we present a circuit-level simulation test bed for an all-memristive spiking neural network (MSNN), composed of synapses and leaky integrate-and-fire (LIF) neuron circuits. As recently proposed, an all-memristive neural network can be designed using volatile diffusion memristors as part of the LIF neuron, and non-volatile drift memristors as synaptic elements. The cognitive performances of our MSNN are demonstrated by the implementation of the spike timing dependent plasticity (STDP) learning rule. Starting from a circuit-level memristive neuron model which incorporates volatility, and a synaptic memristive array, a simple MSNN circuit simulator is designed and its performances are discussed.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-memristive Spiking Neural Network Circuit Simulator\",\"authors\":\"V. Vincan, Jovana Zoranović, N. Samardzic, S. Dautovic\",\"doi\":\"10.1109/mocast54814.2022.9837753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a circuit-level simulation test bed for an all-memristive spiking neural network (MSNN), composed of synapses and leaky integrate-and-fire (LIF) neuron circuits. As recently proposed, an all-memristive neural network can be designed using volatile diffusion memristors as part of the LIF neuron, and non-volatile drift memristors as synaptic elements. The cognitive performances of our MSNN are demonstrated by the implementation of the spike timing dependent plasticity (STDP) learning rule. Starting from a circuit-level memristive neuron model which incorporates volatility, and a synaptic memristive array, a simple MSNN circuit simulator is designed and its performances are discussed.\",\"PeriodicalId\":122414,\"journal\":{\"name\":\"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mocast54814.2022.9837753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种由突触和漏电集成与放电(LIF)神经元电路组成的全记忆脉冲神经网络(MSNN)的电路级仿真试验台。正如最近提出的那样,可以使用挥发性扩散记忆电阻器作为LIF神经元的一部分,而非挥发性漂移记忆电阻器作为突触元件来设计全记忆神经网络。我们的MSNN的认知性能通过实现尖峰时间依赖的可塑性(STDP)学习规则得到验证。从包含挥发性的电路级忆阻神经元模型和突触忆阻阵列出发,设计了一个简单的MSNN电路模拟器,并对其性能进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-memristive Spiking Neural Network Circuit Simulator
In this paper we present a circuit-level simulation test bed for an all-memristive spiking neural network (MSNN), composed of synapses and leaky integrate-and-fire (LIF) neuron circuits. As recently proposed, an all-memristive neural network can be designed using volatile diffusion memristors as part of the LIF neuron, and non-volatile drift memristors as synaptic elements. The cognitive performances of our MSNN are demonstrated by the implementation of the spike timing dependent plasticity (STDP) learning rule. Starting from a circuit-level memristive neuron model which incorporates volatility, and a synaptic memristive array, a simple MSNN circuit simulator is designed and its performances are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defining the performance of SiOx ReRAM by engineering oxide microstructure A Methodology for Writer Identification, With Application to An Important Historical Greek Document Compact Ground Bounce Sensors for SoC Energy Harvesting Applications A System-by-Design Approach for Optimal Planning of EM Skins in Smart Urban Areas A General Model for Metal Oxide-Based Memristors and Application in Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1