一种高效的公交拥挤分类系统

Lingcan Meng, Xiushan Nie, Zhifang Tan
{"title":"一种高效的公交拥挤分类系统","authors":"Lingcan Meng, Xiushan Nie, Zhifang Tan","doi":"10.1145/3469877.3493587","DOIUrl":null,"url":null,"abstract":"We propose an efficient bus crowdedness classification system that can be used in daily life. In particular, we analyze and study the data collected from real bus, aiming to deal with the difficulty of bus congestion classification. Besides, we combine deep learning and computer vision technology to extract images or videos from the internal surveillance cameras of the bus. The information of crowd will finally be integrated with algorithms into a complete classification system. As a consequence, when the user enters the system and submits the image or video to be detected, the system will display the classification results in turn. The classification results include passenger density distribution, number of passengers, date, and algorithm running time. In addition, the user can use the mouse to delineate an area in the passenger density distribution map and count any image area.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Bus Crowdedness Classification System\",\"authors\":\"Lingcan Meng, Xiushan Nie, Zhifang Tan\",\"doi\":\"10.1145/3469877.3493587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient bus crowdedness classification system that can be used in daily life. In particular, we analyze and study the data collected from real bus, aiming to deal with the difficulty of bus congestion classification. Besides, we combine deep learning and computer vision technology to extract images or videos from the internal surveillance cameras of the bus. The information of crowd will finally be integrated with algorithms into a complete classification system. As a consequence, when the user enters the system and submits the image or video to be detected, the system will display the classification results in turn. The classification results include passenger density distribution, number of passengers, date, and algorithm running time. In addition, the user can use the mouse to delineate an area in the passenger density distribution map and count any image area.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3493587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3493587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种可用于日常生活的高效公交拥挤分类系统。特别是对真实公交数据进行分析和研究,以解决公交拥堵分类的难题。此外,我们将深度学习和计算机视觉技术相结合,从公交车内部的监控摄像头中提取图像或视频。人群的信息最终将与算法整合成一个完整的分类系统。因此,当用户进入系统并提交待检测的图像或视频时,系统将依次显示分类结果。分类结果包括乘客密度分布、乘客人数、日期和算法运行时间。此外,用户可以使用鼠标在乘客密度分布图中划定一个区域,并对任何图像区域进行计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Bus Crowdedness Classification System
We propose an efficient bus crowdedness classification system that can be used in daily life. In particular, we analyze and study the data collected from real bus, aiming to deal with the difficulty of bus congestion classification. Besides, we combine deep learning and computer vision technology to extract images or videos from the internal surveillance cameras of the bus. The information of crowd will finally be integrated with algorithms into a complete classification system. As a consequence, when the user enters the system and submits the image or video to be detected, the system will display the classification results in turn. The classification results include passenger density distribution, number of passengers, date, and algorithm running time. In addition, the user can use the mouse to delineate an area in the passenger density distribution map and count any image area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1