利用块背景上下文改进运动状态变化目标检测

Dazhen Lin, Donglin Cao, Hualin Zeng
{"title":"利用块背景上下文改进运动状态变化目标检测","authors":"Dazhen Lin, Donglin Cao, Hualin Zeng","doi":"10.1109/UKCI.2014.6930187","DOIUrl":null,"url":null,"abstract":"Motion state change object detection, such as stopped objects detection, is one of important topics in Video Surveillance Systems. Generally, backgrounds in the most Video Surveillance Systems have the property of pureness and self-similarity. In this paper, we propose a block background context based background model to solve the motion state change problem. Unlike the classical background model, our approach first models blocks of background, and then determines the learning rate of each block background model by using the block background context information. There are two main advantages. First, the model adaptively selects the learning rate for each block of background model, and that is more flexible than the adaptive learning rate for the whole background. Second, context information helps the determination of true foreground and brings in more reliable information in foreground detection. Our experiments results show that our model outperforms the higher and lower learning rate Gaussian mixture background model in motion state change object detection.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Improving motion state change object detection by using block background context\",\"authors\":\"Dazhen Lin, Donglin Cao, Hualin Zeng\",\"doi\":\"10.1109/UKCI.2014.6930187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion state change object detection, such as stopped objects detection, is one of important topics in Video Surveillance Systems. Generally, backgrounds in the most Video Surveillance Systems have the property of pureness and self-similarity. In this paper, we propose a block background context based background model to solve the motion state change problem. Unlike the classical background model, our approach first models blocks of background, and then determines the learning rate of each block background model by using the block background context information. There are two main advantages. First, the model adaptively selects the learning rate for each block of background model, and that is more flexible than the adaptive learning rate for the whole background. Second, context information helps the determination of true foreground and brings in more reliable information in foreground detection. Our experiments results show that our model outperforms the higher and lower learning rate Gaussian mixture background model in motion state change object detection.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

运动状态变化的目标检测,如静止目标检测,是视频监控系统中的重要课题之一。一般来说,大多数视频监控系统的背景都具有纯粹性和自相似性。本文提出了一种基于块背景上下文的背景模型来解决运动状态变化问题。与传统背景模型不同,该方法首先对背景块进行建模,然后利用块背景上下文信息确定每个块背景模型的学习率。有两个主要优势。首先,该模型自适应地选择每块背景模型的学习率,这比整个背景的自适应学习率更灵活;其次,上下文信息有助于确定真实前景,为前景检测带来更可靠的信息。实验结果表明,该模型在运动状态变化目标检测中优于高学习率和低学习率高斯混合背景模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving motion state change object detection by using block background context
Motion state change object detection, such as stopped objects detection, is one of important topics in Video Surveillance Systems. Generally, backgrounds in the most Video Surveillance Systems have the property of pureness and self-similarity. In this paper, we propose a block background context based background model to solve the motion state change problem. Unlike the classical background model, our approach first models blocks of background, and then determines the learning rate of each block background model by using the block background context information. There are two main advantages. First, the model adaptively selects the learning rate for each block of background model, and that is more flexible than the adaptive learning rate for the whole background. Second, context information helps the determination of true foreground and brings in more reliable information in foreground detection. Our experiments results show that our model outperforms the higher and lower learning rate Gaussian mixture background model in motion state change object detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PermGA algorithm for a sequential optimal space filling DoE framework Modeling neural plasticity in echo state networks for time series prediction Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation Adaptive mutation in dynamic environments Automatic image annotation with long distance spatial-context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1