一种收缩hopfield型关联存储器的规格和FPGA实现

I.Z. Mihu, R. Brad, M. Breazu
{"title":"一种收缩hopfield型关联存储器的规格和FPGA实现","authors":"I.Z. Mihu, R. Brad, M. Breazu","doi":"10.1109/IJCNN.2001.939022","DOIUrl":null,"url":null,"abstract":"Neural networks are non-linear static or dynamical systems that learn to solve problems from examples. Most of the learning algorithms require a lot of computing power and, therefore, could benefit from fast dedicated hardware. One of the most common architectures used for this special-purpose hardware is the systolic array. The design and implementation of different neural network architectures in systolic arrays can be complex, however. The paper shows the manner in which the Hopfield neural network can be mapped into a 2-D systolic array and presents an FPGA implementation of the proposed 2-D systolic array.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Specifications and FPGA implementation of a systolic Hopfield-type associative memory\",\"authors\":\"I.Z. Mihu, R. Brad, M. Breazu\",\"doi\":\"10.1109/IJCNN.2001.939022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are non-linear static or dynamical systems that learn to solve problems from examples. Most of the learning algorithms require a lot of computing power and, therefore, could benefit from fast dedicated hardware. One of the most common architectures used for this special-purpose hardware is the systolic array. The design and implementation of different neural network architectures in systolic arrays can be complex, however. The paper shows the manner in which the Hopfield neural network can be mapped into a 2-D systolic array and presents an FPGA implementation of the proposed 2-D systolic array.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

神经网络是非线性的静态或动态系统,它从实例中学习解决问题。大多数学习算法需要大量的计算能力,因此可以从快速专用硬件中受益。用于这种专用硬件的最常见的体系结构之一是收缩阵列。然而,在收缩阵列中设计和实现不同的神经网络架构可能是复杂的。本文展示了Hopfield神经网络可以映射到二维收缩阵列的方式,并给出了所提出的二维收缩阵列的FPGA实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specifications and FPGA implementation of a systolic Hopfield-type associative memory
Neural networks are non-linear static or dynamical systems that learn to solve problems from examples. Most of the learning algorithms require a lot of computing power and, therefore, could benefit from fast dedicated hardware. One of the most common architectures used for this special-purpose hardware is the systolic array. The design and implementation of different neural network architectures in systolic arrays can be complex, however. The paper shows the manner in which the Hopfield neural network can be mapped into a 2-D systolic array and presents an FPGA implementation of the proposed 2-D systolic array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1