{"title":"顺序电路验证使用符号模型检查","authors":"J. Burch, E. Clarke, K. McMillan, D. Dill","doi":"10.1109/DAC.1990.114827","DOIUrl":null,"url":null,"abstract":"The temporal logic model algorithm of E.M. Clarke et al. (ACM Trans. Prog. Lang. Syst., vol.8, no.2, p.244-63, 1986) is modified to represent a state graph using binary decision diagrams (BDDs). Because this representation captures some of the regularity in the state space of sequential circuits with data path logic, one is able to verify circuits with an extremely large number of states. This new technique is demonstrated on a synchronous pipelined design with approximately 5*10/sup 20/ states. The logic that is used to specify circuits is a propositional temporal logic of branching time, called CTL or Computation Tree Logic. The model checking algorithm handles full CTL with fairness constraints. Consequently. it is possible to handle a number of important liveness and fairness properties. which would otherwise not be expressible in CTL. The method presented is not necessarily a replacement for brute-force state-enumeration methods but an alternative that may work efficiently when the brute force methods fail.<<ETX>>","PeriodicalId":118552,"journal":{"name":"27th ACM/IEEE Design Automation Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"477","resultStr":"{\"title\":\"Sequential circuit verification using symbolic model checking\",\"authors\":\"J. Burch, E. Clarke, K. McMillan, D. Dill\",\"doi\":\"10.1109/DAC.1990.114827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temporal logic model algorithm of E.M. Clarke et al. (ACM Trans. Prog. Lang. Syst., vol.8, no.2, p.244-63, 1986) is modified to represent a state graph using binary decision diagrams (BDDs). Because this representation captures some of the regularity in the state space of sequential circuits with data path logic, one is able to verify circuits with an extremely large number of states. This new technique is demonstrated on a synchronous pipelined design with approximately 5*10/sup 20/ states. The logic that is used to specify circuits is a propositional temporal logic of branching time, called CTL or Computation Tree Logic. The model checking algorithm handles full CTL with fairness constraints. Consequently. it is possible to handle a number of important liveness and fairness properties. which would otherwise not be expressible in CTL. The method presented is not necessarily a replacement for brute-force state-enumeration methods but an alternative that may work efficiently when the brute force methods fail.<<ETX>>\",\"PeriodicalId\":118552,\"journal\":{\"name\":\"27th ACM/IEEE Design Automation Conference\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"477\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"27th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC.1990.114827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.1990.114827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequential circuit verification using symbolic model checking
The temporal logic model algorithm of E.M. Clarke et al. (ACM Trans. Prog. Lang. Syst., vol.8, no.2, p.244-63, 1986) is modified to represent a state graph using binary decision diagrams (BDDs). Because this representation captures some of the regularity in the state space of sequential circuits with data path logic, one is able to verify circuits with an extremely large number of states. This new technique is demonstrated on a synchronous pipelined design with approximately 5*10/sup 20/ states. The logic that is used to specify circuits is a propositional temporal logic of branching time, called CTL or Computation Tree Logic. The model checking algorithm handles full CTL with fairness constraints. Consequently. it is possible to handle a number of important liveness and fairness properties. which would otherwise not be expressible in CTL. The method presented is not necessarily a replacement for brute-force state-enumeration methods but an alternative that may work efficiently when the brute force methods fail.<>