内容管理平台中的用户推荐

Jianling Wang, Ziwei Zhu, James Caverlee
{"title":"内容管理平台中的用户推荐","authors":"Jianling Wang, Ziwei Zhu, James Caverlee","doi":"10.1145/3336191.3371822","DOIUrl":null,"url":null,"abstract":"We propose a personalized user recommendation framework for content curation platforms that models preferences for both users and the items they engage with simultaneously. In this way, user preferences for specific item types (e.g., fantasy novels) can be balanced with user specialties (e.g., reviewing novels with strong female protagonists). In particular, the proposed model has three unique characteristics: (i) it simultaneously learns both user-item and user-user preferences through a multi-aspect autoencoder model; (ii) it fuses the latent representations of user preferences on users and items to construct shared factors through an adversarial framework; and (iii) it incorporates an attention layer to produce weighted aggregations of different latent representations, leading to improved personalized recommendation of users and items. Through experiments against state-of-the-art models, we find the proposed framework leads to a 18.43% (Goodreads) and 6.14% (Spotify) improvement in top-k user recommendation.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"User Recommendation in Content Curation Platforms\",\"authors\":\"Jianling Wang, Ziwei Zhu, James Caverlee\",\"doi\":\"10.1145/3336191.3371822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a personalized user recommendation framework for content curation platforms that models preferences for both users and the items they engage with simultaneously. In this way, user preferences for specific item types (e.g., fantasy novels) can be balanced with user specialties (e.g., reviewing novels with strong female protagonists). In particular, the proposed model has three unique characteristics: (i) it simultaneously learns both user-item and user-user preferences through a multi-aspect autoencoder model; (ii) it fuses the latent representations of user preferences on users and items to construct shared factors through an adversarial framework; and (iii) it incorporates an attention layer to produce weighted aggregations of different latent representations, leading to improved personalized recommendation of users and items. Through experiments against state-of-the-art models, we find the proposed framework leads to a 18.43% (Goodreads) and 6.14% (Spotify) improvement in top-k user recommendation.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们为内容管理平台提出了一个个性化的用户推荐框架,该框架可以模拟用户和他们同时参与的项目的偏好。通过这种方式,用户对特定道具类型(如奇幻小说)的偏好可以与用户特长(如评论具有强大女性主角的小说)相平衡。特别地,所提出的模型具有三个独特的特征:(i)它通过一个多面向的自编码器模型同时学习用户-项目和用户-用户偏好;(ii)通过对抗性框架融合用户偏好对用户和项目的潜在表征,构建共享因素;(iii)它结合了一个关注层来产生不同潜在表示的加权聚合,从而改进了用户和项目的个性化推荐。通过对最先进模型的实验,我们发现所提出的框架在top-k用户推荐方面提高了18.43% (Goodreads)和6.14% (Spotify)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User Recommendation in Content Curation Platforms
We propose a personalized user recommendation framework for content curation platforms that models preferences for both users and the items they engage with simultaneously. In this way, user preferences for specific item types (e.g., fantasy novels) can be balanced with user specialties (e.g., reviewing novels with strong female protagonists). In particular, the proposed model has three unique characteristics: (i) it simultaneously learns both user-item and user-user preferences through a multi-aspect autoencoder model; (ii) it fuses the latent representations of user preferences on users and items to construct shared factors through an adversarial framework; and (iii) it incorporates an attention layer to produce weighted aggregations of different latent representations, leading to improved personalized recommendation of users and items. Through experiments against state-of-the-art models, we find the proposed framework leads to a 18.43% (Goodreads) and 6.14% (Spotify) improvement in top-k user recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1