J. M. Fernandes, Marcelino B. Santos, Arlindo L. Oliveira, João Paulo Teixeira
{"title":"RTL的概率可测性分析与DFT方法","authors":"J. M. Fernandes, Marcelino B. Santos, Arlindo L. Oliveira, João Paulo Teixeira","doi":"10.1109/DDECS.2006.1649614","DOIUrl":null,"url":null,"abstract":"This work presents probabilistic methods for testability analysis at RTL and their use to guide DFT techniques like partial-scan and TPI. Controllability is analyzed using an approach that takes into account correlations within pre-defined groups formed based on an originally proposed heuristic. A method for observability computation at RTL based on the Boolean difference is presented. These testability analysis methods were implemented in a tool that reads a Verilog RTL description, solves the Chapman-Kolmogorov equations that describe the steady-state of the circuit, and outputs the computed values for the testability. A methodology for partial-scan and TPI optimization is proposed and implemented. The methodology is based on the testability metrics and on a \"DFT dictionary\". The proposed heuristic and methodology are evaluated using the ITC99 benchmark circuits","PeriodicalId":158707,"journal":{"name":"2006 IEEE Design and Diagnostics of Electronic Circuits and systems","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Probabilistic Testability Analysis and DFT Methods at RTL\",\"authors\":\"J. M. Fernandes, Marcelino B. Santos, Arlindo L. Oliveira, João Paulo Teixeira\",\"doi\":\"10.1109/DDECS.2006.1649614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents probabilistic methods for testability analysis at RTL and their use to guide DFT techniques like partial-scan and TPI. Controllability is analyzed using an approach that takes into account correlations within pre-defined groups formed based on an originally proposed heuristic. A method for observability computation at RTL based on the Boolean difference is presented. These testability analysis methods were implemented in a tool that reads a Verilog RTL description, solves the Chapman-Kolmogorov equations that describe the steady-state of the circuit, and outputs the computed values for the testability. A methodology for partial-scan and TPI optimization is proposed and implemented. The methodology is based on the testability metrics and on a \\\"DFT dictionary\\\". The proposed heuristic and methodology are evaluated using the ITC99 benchmark circuits\",\"PeriodicalId\":158707,\"journal\":{\"name\":\"2006 IEEE Design and Diagnostics of Electronic Circuits and systems\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Design and Diagnostics of Electronic Circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2006.1649614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Design and Diagnostics of Electronic Circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2006.1649614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Testability Analysis and DFT Methods at RTL
This work presents probabilistic methods for testability analysis at RTL and their use to guide DFT techniques like partial-scan and TPI. Controllability is analyzed using an approach that takes into account correlations within pre-defined groups formed based on an originally proposed heuristic. A method for observability computation at RTL based on the Boolean difference is presented. These testability analysis methods were implemented in a tool that reads a Verilog RTL description, solves the Chapman-Kolmogorov equations that describe the steady-state of the circuit, and outputs the computed values for the testability. A methodology for partial-scan and TPI optimization is proposed and implemented. The methodology is based on the testability metrics and on a "DFT dictionary". The proposed heuristic and methodology are evaluated using the ITC99 benchmark circuits