K. Nishibe, W. Jevasuwan, M. Mitome, Y. Bando, Zhong Lin Wang, N. Fukata
{"title":"Ge/Si和Si/Ge核壳纳米线的生长与掺杂控制","authors":"K. Nishibe, W. Jevasuwan, M. Mitome, Y. Bando, Zhong Lin Wang, N. Fukata","doi":"10.1109/ICIPRM.2016.7528645","DOIUrl":null,"url":null,"abstract":"Selective doping and band-offset in core-shell nanowire (NW) structures using germanium (Ge)/ silicon (Si) can realize a type of high electron mobility transistor (HEMT) structure in one-dimensional NWs by separating the carrier transport region from the impurity-doped region. Precise analysis, using Raman spectroscopy of the Ge optical phonon peak, can distinguish three effects: the phonon confinement effect, the stress effect due to the heterostructures, and the Fano effect. Using these techniques, we obtained conclusive evidence of hole gas accumulation in Ge/Si core-shell NWs. The control of hole gas concentration can be realized by changing the B doping concentration in the Si shell.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and doping control of Ge/Si and Si/Ge core-shell nanowires\",\"authors\":\"K. Nishibe, W. Jevasuwan, M. Mitome, Y. Bando, Zhong Lin Wang, N. Fukata\",\"doi\":\"10.1109/ICIPRM.2016.7528645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective doping and band-offset in core-shell nanowire (NW) structures using germanium (Ge)/ silicon (Si) can realize a type of high electron mobility transistor (HEMT) structure in one-dimensional NWs by separating the carrier transport region from the impurity-doped region. Precise analysis, using Raman spectroscopy of the Ge optical phonon peak, can distinguish three effects: the phonon confinement effect, the stress effect due to the heterostructures, and the Fano effect. Using these techniques, we obtained conclusive evidence of hole gas accumulation in Ge/Si core-shell NWs. The control of hole gas concentration can be realized by changing the B doping concentration in the Si shell.\",\"PeriodicalId\":357009,\"journal\":{\"name\":\"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2016.7528645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2016.7528645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growth and doping control of Ge/Si and Si/Ge core-shell nanowires
Selective doping and band-offset in core-shell nanowire (NW) structures using germanium (Ge)/ silicon (Si) can realize a type of high electron mobility transistor (HEMT) structure in one-dimensional NWs by separating the carrier transport region from the impurity-doped region. Precise analysis, using Raman spectroscopy of the Ge optical phonon peak, can distinguish three effects: the phonon confinement effect, the stress effect due to the heterostructures, and the Fano effect. Using these techniques, we obtained conclusive evidence of hole gas accumulation in Ge/Si core-shell NWs. The control of hole gas concentration can be realized by changing the B doping concentration in the Si shell.