{"title":"为什么片上总线的功率最小化转换编码不起作用","authors":"C. Kretzschmar, A. Nieuwland, D. Müller","doi":"10.1109/DATE.2004.1268897","DOIUrl":null,"url":null,"abstract":"Encoding techniques which minimize the self- or coupling activity of buses are often proposed to reduce power dissipation on system buses. In this paper, we investigate the efficiency of several coding schemes for on-chip buses with respect to overall power dissipation. The power of the codec systems was estimated by power simulations with the lay-outs and related to the savings on the bus. We derived an expression for the energy efficiency of the codecs as a function of bus length (capacitive load). Despite the fact that adaptive schemes could obtain up to 40% savings, the bus lengths required to reduce the overall power consumption are not realistic for on-chip buses.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Why transition coding for power minimization of on-chip buses does not work\",\"authors\":\"C. Kretzschmar, A. Nieuwland, D. Müller\",\"doi\":\"10.1109/DATE.2004.1268897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encoding techniques which minimize the self- or coupling activity of buses are often proposed to reduce power dissipation on system buses. In this paper, we investigate the efficiency of several coding schemes for on-chip buses with respect to overall power dissipation. The power of the codec systems was estimated by power simulations with the lay-outs and related to the savings on the bus. We derived an expression for the energy efficiency of the codecs as a function of bus length (capacitive load). Despite the fact that adaptive schemes could obtain up to 40% savings, the bus lengths required to reduce the overall power consumption are not realistic for on-chip buses.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1268897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1268897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Why transition coding for power minimization of on-chip buses does not work
Encoding techniques which minimize the self- or coupling activity of buses are often proposed to reduce power dissipation on system buses. In this paper, we investigate the efficiency of several coding schemes for on-chip buses with respect to overall power dissipation. The power of the codec systems was estimated by power simulations with the lay-outs and related to the savings on the bus. We derived an expression for the energy efficiency of the codecs as a function of bus length (capacitive load). Despite the fact that adaptive schemes could obtain up to 40% savings, the bus lengths required to reduce the overall power consumption are not realistic for on-chip buses.