平滑RRT-connect: RRT-connect的扩展,用于机器人的实际使用

Chelsea Lau, Katie Byl
{"title":"平滑RRT-connect: RRT-connect的扩展,用于机器人的实际使用","authors":"Chelsea Lau, Katie Byl","doi":"10.1109/TePRA.2015.7219666","DOIUrl":null,"url":null,"abstract":"We propose a new extend function for Rapidly-Exploring Randomized Tree (RRT) algorithms that expands along a curve, obeying velocity and acceleration limits, rather than using straight-line trajectories. This results in smooth, feasible trajectories that can readily be applied in robotics applications. Our main focus is the implementation of such methods on RoboSimian, a quadruped robot competing in the DARPA Robotics Challenge (DRC). Planning in a high-dimensional space is also a large consideration in the evaluation of the techniques discussed in this paper as motion planning for RoboSimian requires a search over a 16-dimensional space. In our experiments, we show that our approach produces results that are comparable to the standard RRT solutions in a two-dimensional space and significantly outperforms the latter in a higher-dimensional setting both in computation time and in algorithm reliability.","PeriodicalId":325788,"journal":{"name":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Smooth RRT-connect: An extension of RRT-connect for practical use in robots\",\"authors\":\"Chelsea Lau, Katie Byl\",\"doi\":\"10.1109/TePRA.2015.7219666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new extend function for Rapidly-Exploring Randomized Tree (RRT) algorithms that expands along a curve, obeying velocity and acceleration limits, rather than using straight-line trajectories. This results in smooth, feasible trajectories that can readily be applied in robotics applications. Our main focus is the implementation of such methods on RoboSimian, a quadruped robot competing in the DARPA Robotics Challenge (DRC). Planning in a high-dimensional space is also a large consideration in the evaluation of the techniques discussed in this paper as motion planning for RoboSimian requires a search over a 16-dimensional space. In our experiments, we show that our approach produces results that are comparable to the standard RRT solutions in a two-dimensional space and significantly outperforms the latter in a higher-dimensional setting both in computation time and in algorithm reliability.\",\"PeriodicalId\":325788,\"journal\":{\"name\":\"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TePRA.2015.7219666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2015.7219666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们为快速探索随机树(RRT)算法提出了一个新的扩展函数,该函数沿着曲线扩展,服从速度和加速度限制,而不是使用直线轨迹。这导致光滑,可行的轨迹,可以很容易地应用于机器人应用。我们的主要重点是在RoboSimian上实现这些方法,RoboSimian是一个参加DARPA机器人挑战赛(DRC)的四足机器人。在评估本文所讨论的技术时,高维空间中的规划也是一个重要的考虑因素,因为RoboSimian的运动规划需要在16维空间中进行搜索。在我们的实验中,我们表明,我们的方法产生的结果与二维空间中的标准RRT解决方案相当,并且在计算时间和算法可靠性方面明显优于后者在高维环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smooth RRT-connect: An extension of RRT-connect for practical use in robots
We propose a new extend function for Rapidly-Exploring Randomized Tree (RRT) algorithms that expands along a curve, obeying velocity and acceleration limits, rather than using straight-line trajectories. This results in smooth, feasible trajectories that can readily be applied in robotics applications. Our main focus is the implementation of such methods on RoboSimian, a quadruped robot competing in the DARPA Robotics Challenge (DRC). Planning in a high-dimensional space is also a large consideration in the evaluation of the techniques discussed in this paper as motion planning for RoboSimian requires a search over a 16-dimensional space. In our experiments, we show that our approach produces results that are comparable to the standard RRT solutions in a two-dimensional space and significantly outperforms the latter in a higher-dimensional setting both in computation time and in algorithm reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transparent integration of a real-time collision safety system to a motor control chain of a service robot Enhanced performances for cable-driven flexible robotic systems with asymmetric backlash profile Autonomous convoy driving by night: The vehicle tracking system Service robots: An industrial perspective An iterative clustering algorithm for classification of object motion direction using infrared sensor array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1