Leandro T. Omine, M. D. de Brito, J. Pinto, R. García
{"title":"光伏系统的混合MPPT算法","authors":"Leandro T. Omine, M. D. de Brito, J. Pinto, R. García","doi":"10.1109/SPEC.2018.8636054","DOIUrl":null,"url":null,"abstract":"Photovoltaic generation systems under partial shading conditions are difficult to optimize using conventional maximum power point tracking (MPPT) algorithms. Most of the techniques developed for these conditions fail to track dynamically the MPP and leads to energy losses during normal operation. This paper presents hybrid MPPT algorithms combining global and local MPPTs to extract the most available energy from the system under any condition. The methods are compared through simulations using Matlab/Simulink®, where the tracking factor (TF) and power characteristics during time are evaluated.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid MPPT Algorithms for Photovoltaic Systems\",\"authors\":\"Leandro T. Omine, M. D. de Brito, J. Pinto, R. García\",\"doi\":\"10.1109/SPEC.2018.8636054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic generation systems under partial shading conditions are difficult to optimize using conventional maximum power point tracking (MPPT) algorithms. Most of the techniques developed for these conditions fail to track dynamically the MPP and leads to energy losses during normal operation. This paper presents hybrid MPPT algorithms combining global and local MPPTs to extract the most available energy from the system under any condition. The methods are compared through simulations using Matlab/Simulink®, where the tracking factor (TF) and power characteristics during time are evaluated.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8636054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8636054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photovoltaic generation systems under partial shading conditions are difficult to optimize using conventional maximum power point tracking (MPPT) algorithms. Most of the techniques developed for these conditions fail to track dynamically the MPP and leads to energy losses during normal operation. This paper presents hybrid MPPT algorithms combining global and local MPPTs to extract the most available energy from the system under any condition. The methods are compared through simulations using Matlab/Simulink®, where the tracking factor (TF) and power characteristics during time are evaluated.