{"title":"基于概率局部解码器的多类分类","authors":"Takashi Takenouchi, Shin Ishii","doi":"10.1109/ISSPIT.2007.4458004","DOIUrl":null,"url":null,"abstract":"Based on the framework of error-correcting output coding (ECOC), we formerly proposed a multi-class classification method in which mis-classification of each binary classifier is regarded as a bit inversion error based on a probabilistic model of the noisy channel. In this article, we propose a modification of the method, based on localized likelihood, to deal with the discrepancy of metric between assumed by binary classifiers and underlying the dataset. Experiments using a synthetic dataset are performed, and we observe the improvement by the localized method.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-class classification with a probabilistic localized decoder\",\"authors\":\"Takashi Takenouchi, Shin Ishii\",\"doi\":\"10.1109/ISSPIT.2007.4458004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the framework of error-correcting output coding (ECOC), we formerly proposed a multi-class classification method in which mis-classification of each binary classifier is regarded as a bit inversion error based on a probabilistic model of the noisy channel. In this article, we propose a modification of the method, based on localized likelihood, to deal with the discrepancy of metric between assumed by binary classifiers and underlying the dataset. Experiments using a synthetic dataset are performed, and we observe the improvement by the localized method.\",\"PeriodicalId\":299267,\"journal\":{\"name\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2007.4458004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-class classification with a probabilistic localized decoder
Based on the framework of error-correcting output coding (ECOC), we formerly proposed a multi-class classification method in which mis-classification of each binary classifier is regarded as a bit inversion error based on a probabilistic model of the noisy channel. In this article, we propose a modification of the method, based on localized likelihood, to deal with the discrepancy of metric between assumed by binary classifiers and underlying the dataset. Experiments using a synthetic dataset are performed, and we observe the improvement by the localized method.