基于模型预测控制的ipmms无传感器在线参数估计

M. X. Bui, Le Khac Thuy, D. Xiao, M. F. Rahman
{"title":"基于模型预测控制的ipmms无传感器在线参数估计","authors":"M. X. Bui, Le Khac Thuy, D. Xiao, M. F. Rahman","doi":"10.1109/IECON48115.2021.9589316","DOIUrl":null,"url":null,"abstract":"This paper proposes a sensorless and inductance estimation methods with model predictive control for the interior permanent magnet synchronous motor (IPMSM). The model predictive direct torque and flux control with constant PWM cycle is applied to the control system. The rotor speed and position are estimated based on the current slopes at one active and one zero volage vector during every PWM period where the duty cycle of the active voltage vector is controlled. In addition, the prediction of machine torque and flux is enhanced by the online identification of machine inductances. Extensive numerical simulation has been implemented to validate the robustness and the effectiveness of the proposed sensorless and inductance estimation methods.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensorless and On-line Parameter Estimation with Model Predictive Control of IPMSMs\",\"authors\":\"M. X. Bui, Le Khac Thuy, D. Xiao, M. F. Rahman\",\"doi\":\"10.1109/IECON48115.2021.9589316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a sensorless and inductance estimation methods with model predictive control for the interior permanent magnet synchronous motor (IPMSM). The model predictive direct torque and flux control with constant PWM cycle is applied to the control system. The rotor speed and position are estimated based on the current slopes at one active and one zero volage vector during every PWM period where the duty cycle of the active voltage vector is controlled. In addition, the prediction of machine torque and flux is enhanced by the online identification of machine inductances. Extensive numerical simulation has been implemented to validate the robustness and the effectiveness of the proposed sensorless and inductance estimation methods.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于模型预测控制的内置永磁同步电动机无传感器和电感估计方法。将恒PWM周期的模型预测直接转矩和磁链控制应用于控制系统。在控制有源电压矢量占空比的PWM周期内,根据一个有源电压矢量和一个零电压矢量处的电流斜率估计转子的转速和位置。此外,通过对电机电感的在线识别,增强了对电机转矩和磁链的预测。通过大量的数值仿真来验证所提出的无传感器和电感估计方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensorless and On-line Parameter Estimation with Model Predictive Control of IPMSMs
This paper proposes a sensorless and inductance estimation methods with model predictive control for the interior permanent magnet synchronous motor (IPMSM). The model predictive direct torque and flux control with constant PWM cycle is applied to the control system. The rotor speed and position are estimated based on the current slopes at one active and one zero volage vector during every PWM period where the duty cycle of the active voltage vector is controlled. In addition, the prediction of machine torque and flux is enhanced by the online identification of machine inductances. Extensive numerical simulation has been implemented to validate the robustness and the effectiveness of the proposed sensorless and inductance estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Extended Phase Shift Modulation for DAB Converter with the Blocking Capacitor An Online Noninvasive Estimation Method of Electrolytic Capacitor for Boost Converters Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS) Space Vector Modulation Scheme for Three-Phase Single-Stage SEPIC-Based Grid-Connected Differential Inverter Dynamic Phasor-Based Modeling and Analysis of Dual-Loop Controlled DC-DC Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1