基于多时谱特征的多标签学习嵌入方法在高光谱图像分类中的应用

S. Hemissi, A. Alotaibi, S. Alotaibi
{"title":"基于多时谱特征的多标签学习嵌入方法在高光谱图像分类中的应用","authors":"S. Hemissi, A. Alotaibi, S. Alotaibi","doi":"10.1109/ATSIP49331.2020.9231554","DOIUrl":null,"url":null,"abstract":"Currently, Hyperspectral signal processing is a crucial area of research. Respectively, various techniques have been investigated to apprehend features combination and multi-label classification issues. Indeed, significant consideration has been given to approaches supporting the use of a single type of features. Moreover, few efforts have been dedicated to model the multi-label aspect of hyperspectral pixels and to integrate simultaneously divergent kinds of interdependent features. In this paper, we propose a novel embedding multi-label learning approach integrating complementary weighted features. The proposed framework combines the singular statistical characteristics of each feature to accomplish a physically meaningful cooperative low-dimensional representation of extracted features. This will grant, in one hand, the refinement of classification process and the propagation of narrow class information to unlabeled sample, in the other hand, when only partial labeling knowledge is available. This paper makes the following contributions: (i) the extraction of multi-view features based on the 3D model of the spectral signature and (ii) an embedding multi-label based approach by better tackling unbalanced and dimensionality issues. A set of complementary spatial/spectral features is extracted in the experimental section from a series of hyperspectral images. The obtained results reflect the efficiency of the proposed classification schema while maintaining a reasonable computational complexity.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-label learning embedding approach based on multi-temporal spectral signature for hyperspectral images classification\",\"authors\":\"S. Hemissi, A. Alotaibi, S. Alotaibi\",\"doi\":\"10.1109/ATSIP49331.2020.9231554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, Hyperspectral signal processing is a crucial area of research. Respectively, various techniques have been investigated to apprehend features combination and multi-label classification issues. Indeed, significant consideration has been given to approaches supporting the use of a single type of features. Moreover, few efforts have been dedicated to model the multi-label aspect of hyperspectral pixels and to integrate simultaneously divergent kinds of interdependent features. In this paper, we propose a novel embedding multi-label learning approach integrating complementary weighted features. The proposed framework combines the singular statistical characteristics of each feature to accomplish a physically meaningful cooperative low-dimensional representation of extracted features. This will grant, in one hand, the refinement of classification process and the propagation of narrow class information to unlabeled sample, in the other hand, when only partial labeling knowledge is available. This paper makes the following contributions: (i) the extraction of multi-view features based on the 3D model of the spectral signature and (ii) an embedding multi-label based approach by better tackling unbalanced and dimensionality issues. A set of complementary spatial/spectral features is extracted in the experimental section from a series of hyperspectral images. The obtained results reflect the efficiency of the proposed classification schema while maintaining a reasonable computational complexity.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,高光谱信号处理是一个重要的研究领域。分别研究了各种技术来理解特征组合和多标签分类问题。实际上,对于支持使用单一类型的特性的方法,已经给予了重要的考虑。此外,很少有人致力于高光谱像素的多标签方面的建模,并同时整合各种不同的相互依赖的特征。本文提出了一种基于互补加权特征的嵌入多标签学习方法。该框架结合了每个特征的奇异统计特征,以完成对提取的特征进行物理上有意义的协作低维表示。这一方面可以在只有部分标注知识的情况下,对分类过程进行细化,将窄类信息传播到未标注的样本中。本文在以下方面做出了贡献:(1)基于光谱特征三维模型的多视图特征提取;(2)基于嵌入多标签的方法,更好地解决了不平衡和维数问题。实验部分从一系列高光谱图像中提取出一组互补的空间/光谱特征。得到的结果反映了所提出的分类模式的效率,同时保持了合理的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-label learning embedding approach based on multi-temporal spectral signature for hyperspectral images classification
Currently, Hyperspectral signal processing is a crucial area of research. Respectively, various techniques have been investigated to apprehend features combination and multi-label classification issues. Indeed, significant consideration has been given to approaches supporting the use of a single type of features. Moreover, few efforts have been dedicated to model the multi-label aspect of hyperspectral pixels and to integrate simultaneously divergent kinds of interdependent features. In this paper, we propose a novel embedding multi-label learning approach integrating complementary weighted features. The proposed framework combines the singular statistical characteristics of each feature to accomplish a physically meaningful cooperative low-dimensional representation of extracted features. This will grant, in one hand, the refinement of classification process and the propagation of narrow class information to unlabeled sample, in the other hand, when only partial labeling knowledge is available. This paper makes the following contributions: (i) the extraction of multi-view features based on the 3D model of the spectral signature and (ii) an embedding multi-label based approach by better tackling unbalanced and dimensionality issues. A set of complementary spatial/spectral features is extracted in the experimental section from a series of hyperspectral images. The obtained results reflect the efficiency of the proposed classification schema while maintaining a reasonable computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1