{"title":"用于低功率异步电路的可重构锁存器控制器","authors":"M. Lewis, J. Garside, L. Brackenbury","doi":"10.1109/ASYNC.1999.761520","DOIUrl":null,"url":null,"abstract":"A method for reducing the power consumption in asynchronous micropipeline-based circuits is presented. The method is based around a design for latch controllers in which the operating mode of the pipeline latches (normally open/transparent or normally closed/opaque) can be selected according to the dynamic processing demand on the circuit. Operating in normally-closed mode prevents spurious transitions from propagating along a static pipeline, at the expense of reduced throughput. Tests of the new latch controller circuits on a pipelined multiplier datapath show that reductions in energy per operation of up to 32% can be obtained by changing to the normally-closed operating mode. Estimates suggest that in a typical application which exhibits a variable processing demand, a power reduction of between 16-24% is possible, with little or no impact on maximum throughput.","PeriodicalId":285714,"journal":{"name":"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Reconfigurable latch controllers for low power asynchronous circuits\",\"authors\":\"M. Lewis, J. Garside, L. Brackenbury\",\"doi\":\"10.1109/ASYNC.1999.761520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for reducing the power consumption in asynchronous micropipeline-based circuits is presented. The method is based around a design for latch controllers in which the operating mode of the pipeline latches (normally open/transparent or normally closed/opaque) can be selected according to the dynamic processing demand on the circuit. Operating in normally-closed mode prevents spurious transitions from propagating along a static pipeline, at the expense of reduced throughput. Tests of the new latch controller circuits on a pipelined multiplier datapath show that reductions in energy per operation of up to 32% can be obtained by changing to the normally-closed operating mode. Estimates suggest that in a typical application which exhibits a variable processing demand, a power reduction of between 16-24% is possible, with little or no impact on maximum throughput.\",\"PeriodicalId\":285714,\"journal\":{\"name\":\"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.1999.761520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1999.761520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfigurable latch controllers for low power asynchronous circuits
A method for reducing the power consumption in asynchronous micropipeline-based circuits is presented. The method is based around a design for latch controllers in which the operating mode of the pipeline latches (normally open/transparent or normally closed/opaque) can be selected according to the dynamic processing demand on the circuit. Operating in normally-closed mode prevents spurious transitions from propagating along a static pipeline, at the expense of reduced throughput. Tests of the new latch controller circuits on a pipelined multiplier datapath show that reductions in energy per operation of up to 32% can be obtained by changing to the normally-closed operating mode. Estimates suggest that in a typical application which exhibits a variable processing demand, a power reduction of between 16-24% is possible, with little or no impact on maximum throughput.