粒子群优化与细菌觅食优化在永磁同步电机伺服调速系统中的应用

Hieu Le Dinh, I. Temkin
{"title":"粒子群优化与细菌觅食优化在永磁同步电机伺服调速系统中的应用","authors":"Hieu Le Dinh, I. Temkin","doi":"10.1109/CCE.2018.8465728","DOIUrl":null,"url":null,"abstract":"This paper represents a new method optimal parameters PID based on nature inspired optimization algorithms application speed control of phases Permanent Magnet Synchronous Motors (PMSM). The methods for speed control stabilization of the PMSM using the Adaptive Particle Swarm Optimization controllers (APSO) and Hybrid Bacterial Foraging Particle Swarm Optimization controllers (BFPSO). The response results of the speed control PMSM Servo Systems used APSO and BGPSO methods are compared and the conclusions are given by simulation.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Application of PSO and Bacterial Foraging Optimization to Speed Control PMSM Servo Systems\",\"authors\":\"Hieu Le Dinh, I. Temkin\",\"doi\":\"10.1109/CCE.2018.8465728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper represents a new method optimal parameters PID based on nature inspired optimization algorithms application speed control of phases Permanent Magnet Synchronous Motors (PMSM). The methods for speed control stabilization of the PMSM using the Adaptive Particle Swarm Optimization controllers (APSO) and Hybrid Bacterial Foraging Particle Swarm Optimization controllers (BFPSO). The response results of the speed control PMSM Servo Systems used APSO and BGPSO methods are compared and the conclusions are given by simulation.\",\"PeriodicalId\":118716,\"journal\":{\"name\":\"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCE.2018.8465728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于自然启发优化算法的最优参数PID控制新方法,用于永磁同步电动机的相位速度控制。研究了基于自适应粒子群优化控制器(APSO)和混合细菌觅食粒子群优化控制器(BFPSO)的永磁同步电机速度稳定控制方法。比较了采用APSO和BGPSO两种方法控制永磁同步电机伺服系统的响应结果,并通过仿真给出了结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of PSO and Bacterial Foraging Optimization to Speed Control PMSM Servo Systems
This paper represents a new method optimal parameters PID based on nature inspired optimization algorithms application speed control of phases Permanent Magnet Synchronous Motors (PMSM). The methods for speed control stabilization of the PMSM using the Adaptive Particle Swarm Optimization controllers (APSO) and Hybrid Bacterial Foraging Particle Swarm Optimization controllers (BFPSO). The response results of the speed control PMSM Servo Systems used APSO and BGPSO methods are compared and the conclusions are given by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Optimal Input and Capacity of Non-Coherent Correlated MISO Channels under Per-Antenna Power Constraints Multi-Objective Optimal Resource Allocation Using Particle Swarm Optimization in Cognitive Radio Benchmarking the ONOS Controller with OFCProbe On Selecting the Appropriate Scale in Image Selective Smoothing by Nonlinear Diffusion Multibeam Transmitarrays for 5G Antenna Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1