多维粒子群优化及其在数据聚类和图像检索中的应用

M. Gabbouj
{"title":"多维粒子群优化及其在数据聚类和图像检索中的应用","authors":"M. Gabbouj","doi":"10.1109/IPTA.2010.5586831","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [1] as a population based stochastic search and optimization process. The natural behavior of a bird flock when searching for food is simulated through the movements of the individuals (particles or living organisms) in the flock. The goal is to converge to the global optimum of some multi-dimensional function. PSO is conceptually related to other evolutionary algorithms such as Genetic Algorithms, Genetic Programming, Evolution Strategies, and Evolutionary Programming.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multidimensional particle swarm optimization and applications in data clustering and image retrieval\",\"authors\":\"M. Gabbouj\",\"doi\":\"10.1109/IPTA.2010.5586831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [1] as a population based stochastic search and optimization process. The natural behavior of a bird flock when searching for food is simulated through the movements of the individuals (particles or living organisms) in the flock. The goal is to converge to the global optimum of some multi-dimensional function. PSO is conceptually related to other evolutionary algorithms such as Genetic Algorithms, Genetic Programming, Evolution Strategies, and Evolutionary Programming.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粒子群优化(Particle swarm optimization, PSO)是Kennedy和Eberhart在1995年提出的[1],是一种基于种群的随机搜索和优化过程。鸟群寻找食物时的自然行为是通过鸟群中个体(粒子或生物体)的运动来模拟的。目标是收敛到某个多维函数的全局最优。PSO在概念上与其他进化算法相关,如遗传算法、遗传规划、进化策略和进化规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multidimensional particle swarm optimization and applications in data clustering and image retrieval
Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [1] as a population based stochastic search and optimization process. The natural behavior of a bird flock when searching for food is simulated through the movements of the individuals (particles or living organisms) in the flock. The goal is to converge to the global optimum of some multi-dimensional function. PSO is conceptually related to other evolutionary algorithms such as Genetic Algorithms, Genetic Programming, Evolution Strategies, and Evolutionary Programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1