Fabian Fingerhut, Chaitra Harsha, Amirmohammad Eghbalian, Tom Jacobs, Mahdi Tabassian, R. Verbeke, E. Tsiporkova
{"title":"支持可持续加工过程的数据驱动使用分析和异常检测","authors":"Fabian Fingerhut, Chaitra Harsha, Amirmohammad Eghbalian, Tom Jacobs, Mahdi Tabassian, R. Verbeke, E. Tsiporkova","doi":"10.1109/ICDMW58026.2022.00026","DOIUrl":null,"url":null,"abstract":"There is a lot of room for improvement towards more sustainability in manufacturing companies. During the machining operations, replacement of the cutting tools is not done in an optimal way, resulting in sub-optimal usage of resources and inefficiencies during the production process. Using data-driven approaches to extend the usage of tools can greatly improve on this shortcoming by optimizing the replacement process of these tools. This study is therefore sought to investigate the value of several data-driven approaches, applied to an industrial dataset, to achieve this goal. Although the examined data-driven methods were applied to a dataset which has been generated under a wide variety of machining conditions and lacks reliable ground truth, the obtained experimental results confirm that these methods are indeed capable of extracting informative profiles from the tool usages and can identify anomalous patterns and signs in the time-series datasets collected during different machining processes.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Usage Profiling and Anomaly Detection in Support of Sustainable Machining Processes\",\"authors\":\"Fabian Fingerhut, Chaitra Harsha, Amirmohammad Eghbalian, Tom Jacobs, Mahdi Tabassian, R. Verbeke, E. Tsiporkova\",\"doi\":\"10.1109/ICDMW58026.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a lot of room for improvement towards more sustainability in manufacturing companies. During the machining operations, replacement of the cutting tools is not done in an optimal way, resulting in sub-optimal usage of resources and inefficiencies during the production process. Using data-driven approaches to extend the usage of tools can greatly improve on this shortcoming by optimizing the replacement process of these tools. This study is therefore sought to investigate the value of several data-driven approaches, applied to an industrial dataset, to achieve this goal. Although the examined data-driven methods were applied to a dataset which has been generated under a wide variety of machining conditions and lacks reliable ground truth, the obtained experimental results confirm that these methods are indeed capable of extracting informative profiles from the tool usages and can identify anomalous patterns and signs in the time-series datasets collected during different machining processes.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-Driven Usage Profiling and Anomaly Detection in Support of Sustainable Machining Processes
There is a lot of room for improvement towards more sustainability in manufacturing companies. During the machining operations, replacement of the cutting tools is not done in an optimal way, resulting in sub-optimal usage of resources and inefficiencies during the production process. Using data-driven approaches to extend the usage of tools can greatly improve on this shortcoming by optimizing the replacement process of these tools. This study is therefore sought to investigate the value of several data-driven approaches, applied to an industrial dataset, to achieve this goal. Although the examined data-driven methods were applied to a dataset which has been generated under a wide variety of machining conditions and lacks reliable ground truth, the obtained experimental results confirm that these methods are indeed capable of extracting informative profiles from the tool usages and can identify anomalous patterns and signs in the time-series datasets collected during different machining processes.