使用OpenCL为松散耦合异构集群扩展分析应用程序

T. Suganuma, R. Krishnamurthy, Moriyoshi Ohara, T. Nakatani
{"title":"使用OpenCL为松散耦合异构集群扩展分析应用程序","authors":"T. Suganuma, R. Krishnamurthy, Moriyoshi Ohara, T. Nakatani","doi":"10.1145/2482767.2482812","DOIUrl":null,"url":null,"abstract":"OpenCL is an open standard for heterogeneous parallel programming, exploiting multi-core CPUs, GPUs, or other accelerators as parallel computing resources. Recent work has extended the OpenCL parallel programming model for distributed heterogeneous clusters. For such loosely coupled acceleration architectures, the design of OpenCL programs to maximize performance is quite different from that of conventional tightly coupled acceleration platforms. This paper describes our experiences in OpenCL programming to extract scalable performance for a distributed heterogeneous cluster environment. We picked two real-world analytics workloads, Two-Step Cluster and Linear Regression, that offer different challenges to efficient OpenCL implementations. We obtained scalable performance with this architecture by carefully managing the amount of data and computations in the kernel program design and by well addressing the network latency problems through optimizations.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scaling analytics applications with OpenCL for loosely coupled heterogeneous clusters\",\"authors\":\"T. Suganuma, R. Krishnamurthy, Moriyoshi Ohara, T. Nakatani\",\"doi\":\"10.1145/2482767.2482812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OpenCL is an open standard for heterogeneous parallel programming, exploiting multi-core CPUs, GPUs, or other accelerators as parallel computing resources. Recent work has extended the OpenCL parallel programming model for distributed heterogeneous clusters. For such loosely coupled acceleration architectures, the design of OpenCL programs to maximize performance is quite different from that of conventional tightly coupled acceleration platforms. This paper describes our experiences in OpenCL programming to extract scalable performance for a distributed heterogeneous cluster environment. We picked two real-world analytics workloads, Two-Step Cluster and Linear Regression, that offer different challenges to efficient OpenCL implementations. We obtained scalable performance with this architecture by carefully managing the amount of data and computations in the kernel program design and by well addressing the network latency problems through optimizations.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482767.2482812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

OpenCL是异构并行编程的开放标准,利用多核cpu、gpu或其他加速器作为并行计算资源。最近的工作扩展了OpenCL并行编程模型用于分布式异构集群。对于这种松耦合的加速架构,OpenCL程序最大化性能的设计与传统的紧耦合加速平台有很大的不同。本文描述了我们在OpenCL编程中为分布式异构集群环境提取可扩展性能的经验。我们选择了两种现实世界的分析工作负载,两步集群和线性回归,它们为高效的OpenCL实现提供了不同的挑战。通过仔细管理内核程序设计中的数据量和计算量,以及通过优化很好地解决网络延迟问题,我们获得了可扩展的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling analytics applications with OpenCL for loosely coupled heterogeneous clusters
OpenCL is an open standard for heterogeneous parallel programming, exploiting multi-core CPUs, GPUs, or other accelerators as parallel computing resources. Recent work has extended the OpenCL parallel programming model for distributed heterogeneous clusters. For such loosely coupled acceleration architectures, the design of OpenCL programs to maximize performance is quite different from that of conventional tightly coupled acceleration platforms. This paper describes our experiences in OpenCL programming to extract scalable performance for a distributed heterogeneous cluster environment. We picked two real-world analytics workloads, Two-Step Cluster and Linear Regression, that offer different challenges to efficient OpenCL implementations. We obtained scalable performance with this architecture by carefully managing the amount of data and computations in the kernel program design and by well addressing the network latency problems through optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies for improving performance and energy efficiency on a many-core Cost-effective soft-error protection for SRAM-based structures in GPGPUs Kinship: efficient resource management for performance and functionally asymmetric platforms An algorithm for parallel calculation of trigonometric functions DCNSim: a unified and cross-layer computer architecture simulation framework for data center network research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1