基于足底压力传感器的可穿戴人体步态分析系统的研制

Fei Fei, Ying Leng, Min Yang, Changcheng Wu, Dehua Yang
{"title":"基于足底压力传感器的可穿戴人体步态分析系统的研制","authors":"Fei Fei, Ying Leng, Min Yang, Changcheng Wu, Dehua Yang","doi":"10.1109/NSENS49395.2019.9293994","DOIUrl":null,"url":null,"abstract":"Foot plantar pressure provides plenty of information for gait research and medical diagnostics. Gait analysis can be used to evaluate stroke patient’s mobility and rehabilitation status. However, most of existing gait analysis system can only be used in laboratory or indoor occasions. It makes a large limitation for the gait data collection and analysis. This paper presents a novel wearable human gait analysis system based on flexible circuit and piezoresistive pressure sensors. The insole embedded with 8 pressure sensors is fabricated to collect dynamic resistance varying signals due to the piezoresistive effect. Then the resistance signal is converted to voltage signals with a resistance-voltage conversion circuit board. The wireless transmitter sends the gait data to computer for real-time gait analysis via WIFI chip. The experiment results show the pressure difference on different area of foot plantar during walking, running and squatting. And several gait characteristics such as peak-peak voltage and mean voltage are also calculated and compared. It shows that this novel wearable insole device can be used to monitor plantar pressure during daily life effectively.","PeriodicalId":246485,"journal":{"name":"2019 IEEE THE 2nd INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS for AI, HEALTHCARE, AND ROBOTICS (NSENS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of A Wearable Human Gait Analysis System Based on Plantar Pressure Sensors\",\"authors\":\"Fei Fei, Ying Leng, Min Yang, Changcheng Wu, Dehua Yang\",\"doi\":\"10.1109/NSENS49395.2019.9293994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foot plantar pressure provides plenty of information for gait research and medical diagnostics. Gait analysis can be used to evaluate stroke patient’s mobility and rehabilitation status. However, most of existing gait analysis system can only be used in laboratory or indoor occasions. It makes a large limitation for the gait data collection and analysis. This paper presents a novel wearable human gait analysis system based on flexible circuit and piezoresistive pressure sensors. The insole embedded with 8 pressure sensors is fabricated to collect dynamic resistance varying signals due to the piezoresistive effect. Then the resistance signal is converted to voltage signals with a resistance-voltage conversion circuit board. The wireless transmitter sends the gait data to computer for real-time gait analysis via WIFI chip. The experiment results show the pressure difference on different area of foot plantar during walking, running and squatting. And several gait characteristics such as peak-peak voltage and mean voltage are also calculated and compared. It shows that this novel wearable insole device can be used to monitor plantar pressure during daily life effectively.\",\"PeriodicalId\":246485,\"journal\":{\"name\":\"2019 IEEE THE 2nd INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS for AI, HEALTHCARE, AND ROBOTICS (NSENS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE THE 2nd INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS for AI, HEALTHCARE, AND ROBOTICS (NSENS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSENS49395.2019.9293994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE THE 2nd INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS for AI, HEALTHCARE, AND ROBOTICS (NSENS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSENS49395.2019.9293994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

足底压力为步态研究和医学诊断提供了大量信息。步态分析可用于评估脑卒中患者的活动能力和康复状况。然而,现有的步态分析系统大多只能在实验室或室内场合使用。这给步态数据的采集和分析带来了很大的局限性。提出了一种基于柔性电路和压阻式压力传感器的可穿戴人体步态分析系统。制作了嵌入8个压力传感器的鞋垫,以收集由于压阻效应而产生的动态电阻变化信号。然后用电阻-电压转换电路板将电阻信号转换为电压信号。无线发射器通过WIFI芯片将步态数据发送到计算机进行实时步态分析。实验结果显示了步行、跑步和下蹲时足底不同区域的压力差。计算并比较了峰值电压和平均电压等步态特征。结果表明,这种新型的可穿戴鞋垫装置可以有效地监测日常生活中的足底压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of A Wearable Human Gait Analysis System Based on Plantar Pressure Sensors
Foot plantar pressure provides plenty of information for gait research and medical diagnostics. Gait analysis can be used to evaluate stroke patient’s mobility and rehabilitation status. However, most of existing gait analysis system can only be used in laboratory or indoor occasions. It makes a large limitation for the gait data collection and analysis. This paper presents a novel wearable human gait analysis system based on flexible circuit and piezoresistive pressure sensors. The insole embedded with 8 pressure sensors is fabricated to collect dynamic resistance varying signals due to the piezoresistive effect. Then the resistance signal is converted to voltage signals with a resistance-voltage conversion circuit board. The wireless transmitter sends the gait data to computer for real-time gait analysis via WIFI chip. The experiment results show the pressure difference on different area of foot plantar during walking, running and squatting. And several gait characteristics such as peak-peak voltage and mean voltage are also calculated and compared. It shows that this novel wearable insole device can be used to monitor plantar pressure during daily life effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning with Hyperspectral and Normal Camera Images for Automated Recognition of Orally-administered Drugs Synchronized High-Content Recording of Cardiomyocytes in Vitro by Integrated Cell-Based Biosensor An Efficient Biomass Conversion via Y-valerolactone Tactile Rendering of Fabric Textures Based on Texture Recognition Guided Super-Resolution Restoration of Single Image Based on Image Quality Evaluation Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1