{"title":"20.1 A 5GS/s 7.2 ENOB基于时间交错vco的ADC,实现30.5fJ/反步","authors":"Maarten Baert, W. Dehaene","doi":"10.1109/ISSCC.2019.8662412","DOIUrl":null,"url":null,"abstract":"Technology scaling has been very beneficial for digital circuits both in terms of speed and power. Traditional analog techniques however are challenged by the ever-decreasing supply voltages. Highly digital VCO-based ADCs are able to benefit directly from improved digital performance [1]; however, the resolution and sampling rate of state-of-the-art VCO-based designs are insufficient for most applications. This paper presents a faster and more efficient VCO-based ADC architecture based on an improved high-speed, low-power ring oscillator and an asynchronous counting strategy. The architecture is 8× time-interleaved and combined with on-chip calibration. The design is implemented in 28nm CMOS and achieves 45.2dB SNDR (7.2 ENOB) near Nyquist at 5GS/s while consuming only 22.7mW, resulting in a Walden FOM of 30.5fJ/conv-step. The core area is only 0.023mm 2. These results demonstrate that VCO-based ADCs are a viable choice for next-generation Ethernet and high-speed wireless communication.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"20.1 A 5GS/s 7.2 ENOB Time-Interleaved VCO-Based ADC Achieving 30.5fJ/conv-step\",\"authors\":\"Maarten Baert, W. Dehaene\",\"doi\":\"10.1109/ISSCC.2019.8662412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology scaling has been very beneficial for digital circuits both in terms of speed and power. Traditional analog techniques however are challenged by the ever-decreasing supply voltages. Highly digital VCO-based ADCs are able to benefit directly from improved digital performance [1]; however, the resolution and sampling rate of state-of-the-art VCO-based designs are insufficient for most applications. This paper presents a faster and more efficient VCO-based ADC architecture based on an improved high-speed, low-power ring oscillator and an asynchronous counting strategy. The architecture is 8× time-interleaved and combined with on-chip calibration. The design is implemented in 28nm CMOS and achieves 45.2dB SNDR (7.2 ENOB) near Nyquist at 5GS/s while consuming only 22.7mW, resulting in a Walden FOM of 30.5fJ/conv-step. The core area is only 0.023mm 2. These results demonstrate that VCO-based ADCs are a viable choice for next-generation Ethernet and high-speed wireless communication.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
20.1 A 5GS/s 7.2 ENOB Time-Interleaved VCO-Based ADC Achieving 30.5fJ/conv-step
Technology scaling has been very beneficial for digital circuits both in terms of speed and power. Traditional analog techniques however are challenged by the ever-decreasing supply voltages. Highly digital VCO-based ADCs are able to benefit directly from improved digital performance [1]; however, the resolution and sampling rate of state-of-the-art VCO-based designs are insufficient for most applications. This paper presents a faster and more efficient VCO-based ADC architecture based on an improved high-speed, low-power ring oscillator and an asynchronous counting strategy. The architecture is 8× time-interleaved and combined with on-chip calibration. The design is implemented in 28nm CMOS and achieves 45.2dB SNDR (7.2 ENOB) near Nyquist at 5GS/s while consuming only 22.7mW, resulting in a Walden FOM of 30.5fJ/conv-step. The core area is only 0.023mm 2. These results demonstrate that VCO-based ADCs are a viable choice for next-generation Ethernet and high-speed wireless communication.