基于原位Vth测量和增强策略的尺度硅场效应管持久疲劳综合研究

Xianzhou Shao, Junshuai Chai, Min Liao, Jiahui Duan, Fengbin Tian, Xiaoyu Ke, Xiaoqing Sun, Hao Xu, J. Xiang, Xiaolei Wang, Wenwu Wang
{"title":"基于原位Vth测量和增强策略的尺度硅场效应管持久疲劳综合研究","authors":"Xianzhou Shao, Junshuai Chai, Min Liao, Jiahui Duan, Fengbin Tian, Xiaoyu Ke, Xiaoqing Sun, Hao Xu, J. Xiang, Xiaolei Wang, Wenwu Wang","doi":"10.1109/IMW56887.2023.10145966","DOIUrl":null,"url":null,"abstract":"The endurance degradation mechanism in Si FeFET has attracted great research interest. However, the reports mainly focused on large-scale devices, owing to the external current measurement limitations of modern equipment. In this work, we study the endurance degradation mechanism in the scaled n-FeFET by in-situ Vth measurement to overcome the size limitation. We find that excess electron injection rather than hole injection plays a key role in the charge trapping behavior. As the endurance cycles increase, the Vth after the program pulse positively shifts due to less electron de-trapping. The Vth after erase pulse negatively shifts due to more hole trapping when the Vg changes from -1V to -4V and no hole de-trapping occurs when the Vg changes from -4V to 0 V. The donor trap generation and hole trapping are the dominant factors of endurance failure in the scaled nFeFET.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Study of Endurance Fatigue in the Scaled Si FeFET by in-situ Vth Measurement and Endurance Enhancement Strategy\",\"authors\":\"Xianzhou Shao, Junshuai Chai, Min Liao, Jiahui Duan, Fengbin Tian, Xiaoyu Ke, Xiaoqing Sun, Hao Xu, J. Xiang, Xiaolei Wang, Wenwu Wang\",\"doi\":\"10.1109/IMW56887.2023.10145966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endurance degradation mechanism in Si FeFET has attracted great research interest. However, the reports mainly focused on large-scale devices, owing to the external current measurement limitations of modern equipment. In this work, we study the endurance degradation mechanism in the scaled n-FeFET by in-situ Vth measurement to overcome the size limitation. We find that excess electron injection rather than hole injection plays a key role in the charge trapping behavior. As the endurance cycles increase, the Vth after the program pulse positively shifts due to less electron de-trapping. The Vth after erase pulse negatively shifts due to more hole trapping when the Vg changes from -1V to -4V and no hole de-trapping occurs when the Vg changes from -4V to 0 V. The donor trap generation and hole trapping are the dominant factors of endurance failure in the scaled nFeFET.\",\"PeriodicalId\":153429,\"journal\":{\"name\":\"2023 IEEE International Memory Workshop (IMW)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW56887.2023.10145966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硅效应场效应管的耐久性退化机制引起了广泛的研究兴趣。然而,由于现代设备的外部电流测量限制,报告主要集中在大型设备上。在这项工作中,我们通过原位Vth测量来研究缩放n- ffet的持久退化机制,以克服尺寸限制。我们发现多余的电子注入而不是空穴注入在电荷捕获行为中起关键作用。随着持续周期的增加,程序脉冲后的Vth由于较少的电子脱陷而正移位。当Vg从-1V变化到-4V时,由于更多的空穴捕获,擦除脉冲后的Vth负移动,而当Vg从-4V变化到0 V时,没有空穴捕获发生。供体陷阱的产生和空穴陷阱是影响尺度非场效应管持久失效的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive Study of Endurance Fatigue in the Scaled Si FeFET by in-situ Vth Measurement and Endurance Enhancement Strategy
The endurance degradation mechanism in Si FeFET has attracted great research interest. However, the reports mainly focused on large-scale devices, owing to the external current measurement limitations of modern equipment. In this work, we study the endurance degradation mechanism in the scaled n-FeFET by in-situ Vth measurement to overcome the size limitation. We find that excess electron injection rather than hole injection plays a key role in the charge trapping behavior. As the endurance cycles increase, the Vth after the program pulse positively shifts due to less electron de-trapping. The Vth after erase pulse negatively shifts due to more hole trapping when the Vg changes from -1V to -4V and no hole de-trapping occurs when the Vg changes from -4V to 0 V. The donor trap generation and hole trapping are the dominant factors of endurance failure in the scaled nFeFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Improving Ionizing Radiation Tolerance of 3-D NAND Flash Memory 7-Bit/2Cell (X3.5), 9-Bit/2Cell (X4.5) NAND Flash Memory: Half Bit technology Memory Window in Si:HfO2 FeRAM arrays: Performance Improvement and Extrapolation at Advanced Nodes Recent Technology Insights on STT-MRAM: Structure, Materials, and Process Integration Demonstration of multilevel multiply accumulate operations for AiMC using engineered a-IGZO transistors-based 2T1C gain cell arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1