Zhao-quan Wang, R. Löbenberg, L. Sweeney, J. Wong, W. Finlay
{"title":"改进的药物输送:喷雾冷冻干燥纳米脂质体吸入气溶胶","authors":"Zhao-quan Wang, R. Löbenberg, L. Sweeney, J. Wong, W. Finlay","doi":"10.1109/ICMENS.2004.80","DOIUrl":null,"url":null,"abstract":"A novel powder formulation for inhaled aerosol drug delivery of nano-liposomes has been prepared using spray-freeze drying. After saline reconstitution 91% of the liposome particles (mean volume size) were found to be smaller than 600 nm. Upon aerosol dispersion, a fine particle fraction (FPF) of more than 80% was achieved for this formulation with a model drug (ciprofloxacin) using a new passive inhaler (patent pending) at an inhalation flow rate of 60 l/min.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Drug Delivery: Spray Freeze Dried Nano-Liposomal Inhaled Aerosols\",\"authors\":\"Zhao-quan Wang, R. Löbenberg, L. Sweeney, J. Wong, W. Finlay\",\"doi\":\"10.1109/ICMENS.2004.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel powder formulation for inhaled aerosol drug delivery of nano-liposomes has been prepared using spray-freeze drying. After saline reconstitution 91% of the liposome particles (mean volume size) were found to be smaller than 600 nm. Upon aerosol dispersion, a fine particle fraction (FPF) of more than 80% was achieved for this formulation with a model drug (ciprofloxacin) using a new passive inhaler (patent pending) at an inhalation flow rate of 60 l/min.\",\"PeriodicalId\":344661,\"journal\":{\"name\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2004.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Drug Delivery: Spray Freeze Dried Nano-Liposomal Inhaled Aerosols
A novel powder formulation for inhaled aerosol drug delivery of nano-liposomes has been prepared using spray-freeze drying. After saline reconstitution 91% of the liposome particles (mean volume size) were found to be smaller than 600 nm. Upon aerosol dispersion, a fine particle fraction (FPF) of more than 80% was achieved for this formulation with a model drug (ciprofloxacin) using a new passive inhaler (patent pending) at an inhalation flow rate of 60 l/min.