碳纳米管基材料驱动的实验研究

S. Geier, T. Mahrholz, P. Wierach, M. Sinapius
{"title":"碳纳米管基材料驱动的实验研究","authors":"S. Geier, T. Mahrholz, P. Wierach, M. Sinapius","doi":"10.1115/smasis2019-5685","DOIUrl":null,"url":null,"abstract":"\n Carbon nanotubes (CNTs) show an active behavior when they are positioned within an electric field, immersed into an electrolyte and charged. Several explanations are given, ranging from nanoscopic to macroscopic effects. This paper presents experimental proven explanations of the paper actuation and results using continuous CNTs of a CNT-array.\n For the first test series specimens are cut off a paper manufactured of single-walled, μ-long CNTs working in series. The second test series uses specimens which are prepared of free standing multi-walled CNTs. Their CNT lengths reach macroscopic dimensions of almost 3 mm and they can be considered as connected in parallel. Both series are electromechanically tested.\n The paper tests reveal their strong condition-dependent microstructure. Generally, the observed effects can be explained by diffusion of ions into the flexible CNT microstructure.\n In contrast, the CNT-array based specimens show almost no condition dependency which can be explained by the strong carbon bonds. Due to specimen orientation and test set-up, macroscopic effects can be excluded. The found actuation can be attributed to an elongation of the carbon structure as result of ion-interaction. However, it must be assumed that there are further superimposing effects which might not be distinguished from each other down to the last detail.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Studies of the Actuation of Carbon Nanotube-Based Materials\",\"authors\":\"S. Geier, T. Mahrholz, P. Wierach, M. Sinapius\",\"doi\":\"10.1115/smasis2019-5685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Carbon nanotubes (CNTs) show an active behavior when they are positioned within an electric field, immersed into an electrolyte and charged. Several explanations are given, ranging from nanoscopic to macroscopic effects. This paper presents experimental proven explanations of the paper actuation and results using continuous CNTs of a CNT-array.\\n For the first test series specimens are cut off a paper manufactured of single-walled, μ-long CNTs working in series. The second test series uses specimens which are prepared of free standing multi-walled CNTs. Their CNT lengths reach macroscopic dimensions of almost 3 mm and they can be considered as connected in parallel. Both series are electromechanically tested.\\n The paper tests reveal their strong condition-dependent microstructure. Generally, the observed effects can be explained by diffusion of ions into the flexible CNT microstructure.\\n In contrast, the CNT-array based specimens show almost no condition dependency which can be explained by the strong carbon bonds. Due to specimen orientation and test set-up, macroscopic effects can be excluded. The found actuation can be attributed to an elongation of the carbon structure as result of ion-interaction. However, it must be assumed that there are further superimposing effects which might not be distinguished from each other down to the last detail.\",\"PeriodicalId\":235262,\"journal\":{\"name\":\"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/smasis2019-5685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米管(Carbon nanotubes, CNTs)在电场中、浸入电解质中并带电时表现出活性。给出了从纳米到宏观效应的几种解释。本文介绍了使用连续碳纳米管阵列的纸驱动和结果的实验证明的解释。在第一个测试系列中,将单壁μ长碳纳米管制成的纸剪下样品。第二个测试系列使用由独立多壁CNTs制备的样品。它们的碳纳米管长度达到近3毫米的宏观尺寸,它们可以被认为是并联的。两个系列都进行了机电测试。纸面试验表明它们的微观结构具有很强的条件依赖性。一般来说,观察到的效应可以用离子扩散到柔性碳纳米管微观结构来解释。相比之下,基于碳纳米管阵列的样品几乎没有条件依赖性,这可以用强碳键来解释。由于试样的取向和测试设置,宏观影响可以排除。发现的驱动可以归因于碳结构的延伸作为离子相互作用的结果。然而,必须假定存在进一步的叠加效应,这些效应可能连最后的细节都无法相互区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Studies of the Actuation of Carbon Nanotube-Based Materials
Carbon nanotubes (CNTs) show an active behavior when they are positioned within an electric field, immersed into an electrolyte and charged. Several explanations are given, ranging from nanoscopic to macroscopic effects. This paper presents experimental proven explanations of the paper actuation and results using continuous CNTs of a CNT-array. For the first test series specimens are cut off a paper manufactured of single-walled, μ-long CNTs working in series. The second test series uses specimens which are prepared of free standing multi-walled CNTs. Their CNT lengths reach macroscopic dimensions of almost 3 mm and they can be considered as connected in parallel. Both series are electromechanically tested. The paper tests reveal their strong condition-dependent microstructure. Generally, the observed effects can be explained by diffusion of ions into the flexible CNT microstructure. In contrast, the CNT-array based specimens show almost no condition dependency which can be explained by the strong carbon bonds. Due to specimen orientation and test set-up, macroscopic effects can be excluded. The found actuation can be attributed to an elongation of the carbon structure as result of ion-interaction. However, it must be assumed that there are further superimposing effects which might not be distinguished from each other down to the last detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupled Electro-Thermo-Mechanical Modeling of Shape Memory Polymers Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping Self-Sensing Composite Materials With Intelligent Fabrics Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings Methodology for Minimizing Operational Influences of the Test Rig During Long-Term Investigations of SMA Wires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1