综合分析探索性景观分析特征对功能转换的不变性

Urban Škvorc, T. Eftimov, P. Korošec
{"title":"综合分析探索性景观分析特征对功能转换的不变性","authors":"Urban Škvorc, T. Eftimov, P. Korošec","doi":"10.1109/CEC55065.2022.9870313","DOIUrl":null,"url":null,"abstract":"Exploratory Landscape Analysis is a powerful technique that allows us to gain an understanding of a problem landscape solely by sampling the problem space. It has been successfully used in a number of applications, for example for the task of automatic algorithm selection. However, recent work has shown that Exploratory Landscape Analysis contains some specific weaknesses that its users should be aware of. As the technique is sample based, it has been shown to be sensitive to the choice of sampling strategy. Additionally, many landscape features are not invariant to transformations of the underlying samples which should have no effect on algorithm performance, specifically shifting and scaling. The analysis of the effect of shifting and scaling has so far only been demonstrated on a single problem set and dimensionality. In this paper, we perform a comprehensive analysis of the invariance of Exploratory Landscape Analysis features to these two transformations, by considering different sampling strate-gies, sampling sizes, problem dimensionalities, and benchmark problem sets to determine their individual and combined effect. We show that these factors have very limited influence on the features' invariance when they are considered either individually or combined.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive Analysis of the Invariance of Exploratory Landscape Analysis Features to Function Transformations\",\"authors\":\"Urban Škvorc, T. Eftimov, P. Korošec\",\"doi\":\"10.1109/CEC55065.2022.9870313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploratory Landscape Analysis is a powerful technique that allows us to gain an understanding of a problem landscape solely by sampling the problem space. It has been successfully used in a number of applications, for example for the task of automatic algorithm selection. However, recent work has shown that Exploratory Landscape Analysis contains some specific weaknesses that its users should be aware of. As the technique is sample based, it has been shown to be sensitive to the choice of sampling strategy. Additionally, many landscape features are not invariant to transformations of the underlying samples which should have no effect on algorithm performance, specifically shifting and scaling. The analysis of the effect of shifting and scaling has so far only been demonstrated on a single problem set and dimensionality. In this paper, we perform a comprehensive analysis of the invariance of Exploratory Landscape Analysis features to these two transformations, by considering different sampling strate-gies, sampling sizes, problem dimensionalities, and benchmark problem sets to determine their individual and combined effect. We show that these factors have very limited influence on the features' invariance when they are considered either individually or combined.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

探索性景观分析是一项强大的技术,它允许我们仅通过采样问题空间来获得对问题景观的理解。它已成功地应用于许多应用中,例如用于自动算法选择的任务。然而,最近的工作表明,探索性景观分析包含一些特定的弱点,它的用户应该意识到。由于该技术是基于样本的,它对采样策略的选择很敏感。此外,许多景观特征对底层样本的变换并不是不变的,这应该不会影响算法的性能,特别是移动和缩放。到目前为止,对移动和缩放效应的分析只在单个问题集和维度上得到了证明。在本文中,我们通过考虑不同的采样策略、采样规模、问题维度和基准问题集,全面分析了探索性景观分析特征对这两种转换的不变性,以确定它们的单独效果和组合效果。我们表明,无论是单独考虑还是组合考虑,这些因素对特征不变性的影响都非常有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Analysis of the Invariance of Exploratory Landscape Analysis Features to Function Transformations
Exploratory Landscape Analysis is a powerful technique that allows us to gain an understanding of a problem landscape solely by sampling the problem space. It has been successfully used in a number of applications, for example for the task of automatic algorithm selection. However, recent work has shown that Exploratory Landscape Analysis contains some specific weaknesses that its users should be aware of. As the technique is sample based, it has been shown to be sensitive to the choice of sampling strategy. Additionally, many landscape features are not invariant to transformations of the underlying samples which should have no effect on algorithm performance, specifically shifting and scaling. The analysis of the effect of shifting and scaling has so far only been demonstrated on a single problem set and dimensionality. In this paper, we perform a comprehensive analysis of the invariance of Exploratory Landscape Analysis features to these two transformations, by considering different sampling strate-gies, sampling sizes, problem dimensionalities, and benchmark problem sets to determine their individual and combined effect. We show that these factors have very limited influence on the features' invariance when they are considered either individually or combined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1