基于个性化3d打印mri的脑动脉模型的准确性

M. Kociński, A. Materka, M. Elgalal, A. Majos
{"title":"基于个性化3d打印mri的脑动脉模型的准确性","authors":"M. Kociński, A. Materka, M. Elgalal, A. Majos","doi":"10.1109/IWSSIP.2017.7965601","DOIUrl":null,"url":null,"abstract":"Possibilities of constructing an anatomically correct and accurate geometric model of brain blood vessels basing on clinical 1.5T magnetic resonance images are explored. A high-resolution ToF MR image (0.49 mm3 voxel) was used to build a reference geometric model of selected real-brain arteries. This model was STL-described and 3D printed using a photopolymer material. The printed phantom was submerged in water and scanned using a low-resolution clinical MR system (0.33×0.33×2.2 mm). Level-set segmentation of the obtained T2 images showed significant staircase effect. After T2 image resampling to 0.33mm3 voxel size, the model walls become smoother, but thin branches were still missing. A Frangi filtering-based, smooth centerline-radius vessel branches description was then developed to achieve their correct reconstruction with subvoxel accuracy. Challenges of MRI acquisition of 3D printed models are discussed.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On accuracy of personalized 3D-printed MRI-based models of brain arteries\",\"authors\":\"M. Kociński, A. Materka, M. Elgalal, A. Majos\",\"doi\":\"10.1109/IWSSIP.2017.7965601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Possibilities of constructing an anatomically correct and accurate geometric model of brain blood vessels basing on clinical 1.5T magnetic resonance images are explored. A high-resolution ToF MR image (0.49 mm3 voxel) was used to build a reference geometric model of selected real-brain arteries. This model was STL-described and 3D printed using a photopolymer material. The printed phantom was submerged in water and scanned using a low-resolution clinical MR system (0.33×0.33×2.2 mm). Level-set segmentation of the obtained T2 images showed significant staircase effect. After T2 image resampling to 0.33mm3 voxel size, the model walls become smoother, but thin branches were still missing. A Frangi filtering-based, smooth centerline-radius vessel branches description was then developed to achieve their correct reconstruction with subvoxel accuracy. Challenges of MRI acquisition of 3D printed models are discussed.\",\"PeriodicalId\":302860,\"journal\":{\"name\":\"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSIP.2017.7965601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

探讨基于临床1.5T磁共振图像构建解剖学上正确准确的脑血管几何模型的可能性。使用高分辨率ToF MR图像(0.49 mm3体素)建立选定的真实脑动脉的参考几何模型。该模型采用stl描述,并使用光聚合物材料进行3D打印。将打印的假体浸入水中,使用低分辨率临床MR系统(0.33×0.33×2.2 mm)进行扫描。对得到的T2图像进行水平集分割,显示出明显的阶梯效应。T2图像重采样至0.33mm3体素后,模型壁变得更加光滑,但仍然缺少细枝。然后开发了基于Frangi滤波的平滑中心线半径血管分支描述,以实现亚体素精度的正确重建。讨论了3D打印模型的MRI采集面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On accuracy of personalized 3D-printed MRI-based models of brain arteries
Possibilities of constructing an anatomically correct and accurate geometric model of brain blood vessels basing on clinical 1.5T magnetic resonance images are explored. A high-resolution ToF MR image (0.49 mm3 voxel) was used to build a reference geometric model of selected real-brain arteries. This model was STL-described and 3D printed using a photopolymer material. The printed phantom was submerged in water and scanned using a low-resolution clinical MR system (0.33×0.33×2.2 mm). Level-set segmentation of the obtained T2 images showed significant staircase effect. After T2 image resampling to 0.33mm3 voxel size, the model walls become smoother, but thin branches were still missing. A Frangi filtering-based, smooth centerline-radius vessel branches description was then developed to achieve their correct reconstruction with subvoxel accuracy. Challenges of MRI acquisition of 3D printed models are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1