双频差分输出CMOS低噪声放大器

Atsuhiro Hamasawa, H. Kanaya
{"title":"双频差分输出CMOS低噪声放大器","authors":"Atsuhiro Hamasawa, H. Kanaya","doi":"10.1109/EPTC.2018.8654309","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a dual-band low noise amplifier (LNA) with a single input differential outputs of 5.2 GHz and 2.4GHz band with $0.18 \\mu \\mathrm{m}$ CMOS technology. In order to achieve the goal of expanding the availability of telecommunication system, this LNA is designed as a dual-band operation by using a band pass filter and a notch filter simultaneously [1]. Moreover, by introducing the CG (common gate)-CS (common source) topology [2], we can obtain the output phase differs by 0 and 180 degrees. This will reduce the connection loss to the mixer developed in the previous study [3]. In this paper, simulation results of gain, noise figure and output phase difference are shown, and a chip layout is shown. The proposed LNA has a gain of 16.5 dB and 11.1 dB at 2.4 GHz and 5.2 GHz, a noise figure of 3.1 dB and 3.7 dB, and the phase difference is less than 0.32 degrees.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dual-band differential outputs CMOS Low Noise Amplifier\",\"authors\":\"Atsuhiro Hamasawa, H. Kanaya\",\"doi\":\"10.1109/EPTC.2018.8654309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a dual-band low noise amplifier (LNA) with a single input differential outputs of 5.2 GHz and 2.4GHz band with $0.18 \\\\mu \\\\mathrm{m}$ CMOS technology. In order to achieve the goal of expanding the availability of telecommunication system, this LNA is designed as a dual-band operation by using a band pass filter and a notch filter simultaneously [1]. Moreover, by introducing the CG (common gate)-CS (common source) topology [2], we can obtain the output phase differs by 0 and 180 degrees. This will reduce the connection loss to the mixer developed in the previous study [3]. In this paper, simulation results of gain, noise figure and output phase difference are shown, and a chip layout is shown. The proposed LNA has a gain of 16.5 dB and 11.1 dB at 2.4 GHz and 5.2 GHz, a noise figure of 3.1 dB and 3.7 dB, and the phase difference is less than 0.32 degrees.\",\"PeriodicalId\":360239,\"journal\":{\"name\":\"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2018.8654309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2018.8654309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文采用$0.18 \mu \ mathm {m}$ CMOS技术,设计了一种单输入差分输出为5.2 GHz和2.4GHz的双频低噪声放大器(LNA)。为了达到扩大电信系统可用性的目的,该LNA被设计为双带工作,同时使用带通滤波器和陷波滤波器[1]。此外,通过引入CG(共门)-CS(共源)拓扑[2],我们可以获得0度和180度的输出相位差。这将减少先前研究[3]中开发的混合器的连接损耗。文中给出了增益、噪声系数和输出相位差的仿真结果,并给出了芯片布局。所设计的LNA在2.4 GHz和5.2 GHz时的增益分别为16.5 dB和11.1 dB,噪声系数分别为3.1 dB和3.7 dB,相位差小于0.32°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-band differential outputs CMOS Low Noise Amplifier
This paper presents the design of a dual-band low noise amplifier (LNA) with a single input differential outputs of 5.2 GHz and 2.4GHz band with $0.18 \mu \mathrm{m}$ CMOS technology. In order to achieve the goal of expanding the availability of telecommunication system, this LNA is designed as a dual-band operation by using a band pass filter and a notch filter simultaneously [1]. Moreover, by introducing the CG (common gate)-CS (common source) topology [2], we can obtain the output phase differs by 0 and 180 degrees. This will reduce the connection loss to the mixer developed in the previous study [3]. In this paper, simulation results of gain, noise figure and output phase difference are shown, and a chip layout is shown. The proposed LNA has a gain of 16.5 dB and 11.1 dB at 2.4 GHz and 5.2 GHz, a noise figure of 3.1 dB and 3.7 dB, and the phase difference is less than 0.32 degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Package Integrity and Reliability Effects of Mold Compound Chemistry for Power Device Application Kirkendall Voids Improvement in Thin Small No Lead Package Implementation of High-Temperature Pressure Sensor Package and Characterization up to 500°C EPIC Via Last on SOI Wafer Integration Challenges Laser hybrid integration on silicon photonic integrated circuits with reflected grating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1