基于dna损伤细胞通过G1/S检查点概率的CDK2触发细胞衰老的稳健性

Hong Ling, S. Samarasinghe, D. Kulasiri
{"title":"基于dna损伤细胞通过G1/S检查点概率的CDK2触发细胞衰老的稳健性","authors":"Hong Ling, S. Samarasinghe, D. Kulasiri","doi":"10.1109/ISB.2011.6033112","DOIUrl":null,"url":null,"abstract":"Recent experiments have shown that cellular senescence, a mechanism employed by cells for thwarting cell proliferation, plays an important role in protecting cells against cancer; therefore, a deeper understanding of cellular senescence can lead to effective cancer treatment. Inhibition of CDK2 is thought to be the critical trigger for cellular senescence. In this study, we first implement a mathematical model of G1/S transition involving the DNA-damage pathway and show that cellular senescence can be achieved by lowering CDK2. The robustness of CDK2 in triggering cellular senescence is determined from the probability (β) of DNA-damaged cells passing G1/S checkpoint for normal CDK2 and CDK2-deficient situations based on different thresholds of the peak time of two important biomarkers, CycE and E2F. The comparison of the values of β under the normal CDK2 and lower CDK2 levels reveals that reducing CDK2 levels can decrease the percentage of damaged cells passing G1/S checkpoint; more importantly, 50% reduction of CDK2 achieves 65% reduction in the percentage of damaged cells passing the G1/S checkpoint. These results point out that the developed model can highlight the possibility of lowering the bar for cellular senescence by reducing CDK2 levels. The results of investigation of β for the different thresholds of the peak times of other biomarkers show that β is insensitive to these perturbations of the peak time indicating that CDK2 activity is robust in lowering the senescence bar for low and high levels of DNA-damage. Furthermore, a mathematical formulation of robustness indicates that the robustness of CDK2 -triggered senescence increases with decreasing levels of CDK2, and is slightly greater for low-level DNA damage condition.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of CDK2 in triggering cellular senescence based on probability of DNA-damaged cells passing G1/S checkpoint\",\"authors\":\"Hong Ling, S. Samarasinghe, D. Kulasiri\",\"doi\":\"10.1109/ISB.2011.6033112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experiments have shown that cellular senescence, a mechanism employed by cells for thwarting cell proliferation, plays an important role in protecting cells against cancer; therefore, a deeper understanding of cellular senescence can lead to effective cancer treatment. Inhibition of CDK2 is thought to be the critical trigger for cellular senescence. In this study, we first implement a mathematical model of G1/S transition involving the DNA-damage pathway and show that cellular senescence can be achieved by lowering CDK2. The robustness of CDK2 in triggering cellular senescence is determined from the probability (β) of DNA-damaged cells passing G1/S checkpoint for normal CDK2 and CDK2-deficient situations based on different thresholds of the peak time of two important biomarkers, CycE and E2F. The comparison of the values of β under the normal CDK2 and lower CDK2 levels reveals that reducing CDK2 levels can decrease the percentage of damaged cells passing G1/S checkpoint; more importantly, 50% reduction of CDK2 achieves 65% reduction in the percentage of damaged cells passing the G1/S checkpoint. These results point out that the developed model can highlight the possibility of lowering the bar for cellular senescence by reducing CDK2 levels. The results of investigation of β for the different thresholds of the peak times of other biomarkers show that β is insensitive to these perturbations of the peak time indicating that CDK2 activity is robust in lowering the senescence bar for low and high levels of DNA-damage. Furthermore, a mathematical formulation of robustness indicates that the robustness of CDK2 -triggered senescence increases with decreasing levels of CDK2, and is slightly greater for low-level DNA damage condition.\",\"PeriodicalId\":355056,\"journal\":{\"name\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2011.6033112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的实验表明,细胞衰老是细胞用来阻止细胞增殖的一种机制,在保护细胞免受癌症侵害方面起着重要作用;因此,更深入地了解细胞衰老可以导致有效的癌症治疗。抑制CDK2被认为是细胞衰老的关键触发因素。在这项研究中,我们首先实现了涉及dna损伤途径的G1/S转变的数学模型,并表明细胞衰老可以通过降低CDK2来实现。CDK2触发细胞衰老的稳健性是通过基于两种重要生物标志物CycE和E2F峰值时间不同阈值的dna损伤细胞在正常CDK2和CDK2缺陷情况下通过G1/S检查点的概率(β)来确定的。正常CDK2和低CDK2水平下β值的比较表明,降低CDK2水平可降低受损细胞通过G1/S检查点的百分比;更重要的是,减少50%的CDK2可使通过G1/S检查点的受损细胞百分比降低65%。这些结果表明,所建立的模型可以突出通过降低CDK2水平来降低细胞衰老门槛的可能性。对其他生物标志物峰值时间的不同阈值的研究结果表明,β对峰值时间的这些扰动不敏感,这表明CDK2活性在降低低水平和高水平dna损伤的衰老方面是稳健的。此外,稳健性的数学公式表明,CDK2触发的衰老的稳健性随着CDK2水平的降低而增加,并且在低水平DNA损伤条件下略高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robustness of CDK2 in triggering cellular senescence based on probability of DNA-damaged cells passing G1/S checkpoint
Recent experiments have shown that cellular senescence, a mechanism employed by cells for thwarting cell proliferation, plays an important role in protecting cells against cancer; therefore, a deeper understanding of cellular senescence can lead to effective cancer treatment. Inhibition of CDK2 is thought to be the critical trigger for cellular senescence. In this study, we first implement a mathematical model of G1/S transition involving the DNA-damage pathway and show that cellular senescence can be achieved by lowering CDK2. The robustness of CDK2 in triggering cellular senescence is determined from the probability (β) of DNA-damaged cells passing G1/S checkpoint for normal CDK2 and CDK2-deficient situations based on different thresholds of the peak time of two important biomarkers, CycE and E2F. The comparison of the values of β under the normal CDK2 and lower CDK2 levels reveals that reducing CDK2 levels can decrease the percentage of damaged cells passing G1/S checkpoint; more importantly, 50% reduction of CDK2 achieves 65% reduction in the percentage of damaged cells passing the G1/S checkpoint. These results point out that the developed model can highlight the possibility of lowering the bar for cellular senescence by reducing CDK2 levels. The results of investigation of β for the different thresholds of the peak times of other biomarkers show that β is insensitive to these perturbations of the peak time indicating that CDK2 activity is robust in lowering the senescence bar for low and high levels of DNA-damage. Furthermore, a mathematical formulation of robustness indicates that the robustness of CDK2 -triggered senescence increases with decreasing levels of CDK2, and is slightly greater for low-level DNA damage condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting coherent local patterns from time series gene expression data by a temporal biclustering method Bifurcation of an epidemic model with sub-optimal immunity and saturated recovery rate Parallel-META: A high-performance computational pipeline for metagenomic data analysis The role of GSH depletion in Resveratrol induced HeLa cell apoptosis Genomic signatures for metagenomic data analysis: Exploiting the reverse complementarity of tetranucleotides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1