基于在线应用测试的mpsoc硬件木马检测与恢复

Amin Malekpour, R. Ragel, Daniel Murphy, A. Ignjatović, S. Parameswaran
{"title":"基于在线应用测试的mpsoc硬件木马检测与恢复","authors":"Amin Malekpour, R. Ragel, Daniel Murphy, A. Ignjatović, S. Parameswaran","doi":"10.1109/DDECS.2019.8724649","DOIUrl":null,"url":null,"abstract":"We present a Hardware Trojan (HT) detection, identification and recovery mechanism for Multiprocessor Systems on Chips (MPSoCs). Our method utilizes on-line testing to mitigate the effects of hardware Trojans in a computing system using a Hardware Security Monitor (HSM), a trusted hardware module, and an On-line Test Procedure (OTP), a software module. The proposed approach focuses on mitigating hardware Trojans with a permanent impact on the computing system and enables MPSoCs to continue functioning in the presence of the hardware Trojans. We have successfully validated the proposed method by implementing known hardware Trojans from Trust-Hub on a Xilinx ML605 FPGA. The implementation incurred 4.5% area and 9.1% execution time overheads for a set of benchmark applications. Compared to the state of the art, the proposed mechanism’s area and power overheads are significantly lower while the execution time overhead is slightly higher. State of the art systems utilizing differing cores have been shown to be effective in simulation environments, while the proposed mechanism has been implemented in FPGAs to illustrate that such a system can be realized in hardware.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Trojan Detection and Recovery in MPSoCs via On-line Application Specific Testing\",\"authors\":\"Amin Malekpour, R. Ragel, Daniel Murphy, A. Ignjatović, S. Parameswaran\",\"doi\":\"10.1109/DDECS.2019.8724649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Hardware Trojan (HT) detection, identification and recovery mechanism for Multiprocessor Systems on Chips (MPSoCs). Our method utilizes on-line testing to mitigate the effects of hardware Trojans in a computing system using a Hardware Security Monitor (HSM), a trusted hardware module, and an On-line Test Procedure (OTP), a software module. The proposed approach focuses on mitigating hardware Trojans with a permanent impact on the computing system and enables MPSoCs to continue functioning in the presence of the hardware Trojans. We have successfully validated the proposed method by implementing known hardware Trojans from Trust-Hub on a Xilinx ML605 FPGA. The implementation incurred 4.5% area and 9.1% execution time overheads for a set of benchmark applications. Compared to the state of the art, the proposed mechanism’s area and power overheads are significantly lower while the execution time overhead is slightly higher. State of the art systems utilizing differing cores have been shown to be effective in simulation environments, while the proposed mechanism has been implemented in FPGAs to illustrate that such a system can be realized in hardware.\",\"PeriodicalId\":197053,\"journal\":{\"name\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2019.8724649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于多处理器片上系统(mpsoc)的硬件木马(HT)检测、识别和恢复机制。我们的方法利用在线测试来减轻计算系统中硬件木马的影响,使用硬件安全监视器(HSM),一个可信的硬件模块,和在线测试程序(OTP),一个软件模块。建议的方法侧重于减轻硬件木马对计算系统的永久影响,并使mpsoc在硬件木马存在的情况下继续工作。我们通过在Xilinx ML605 FPGA上实现Trust-Hub中的已知硬件木马,成功验证了所提出的方法。对于一组基准应用程序,该实现产生了4.5%的面积开销和9.1%的执行时间开销。与现有的技术相比,所提议的机制的面积和功耗开销明显较低,而执行时间开销略高。利用不同内核的先进系统已被证明在仿真环境中是有效的,而所提出的机制已在fpga中实现,以说明这样的系统可以在硬件中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware Trojan Detection and Recovery in MPSoCs via On-line Application Specific Testing
We present a Hardware Trojan (HT) detection, identification and recovery mechanism for Multiprocessor Systems on Chips (MPSoCs). Our method utilizes on-line testing to mitigate the effects of hardware Trojans in a computing system using a Hardware Security Monitor (HSM), a trusted hardware module, and an On-line Test Procedure (OTP), a software module. The proposed approach focuses on mitigating hardware Trojans with a permanent impact on the computing system and enables MPSoCs to continue functioning in the presence of the hardware Trojans. We have successfully validated the proposed method by implementing known hardware Trojans from Trust-Hub on a Xilinx ML605 FPGA. The implementation incurred 4.5% area and 9.1% execution time overheads for a set of benchmark applications. Compared to the state of the art, the proposed mechanism’s area and power overheads are significantly lower while the execution time overhead is slightly higher. State of the art systems utilizing differing cores have been shown to be effective in simulation environments, while the proposed mechanism has been implemented in FPGAs to illustrate that such a system can be realized in hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New categories of Safe Faults in a processor-based Embedded System Effective Screening of Automotive SoCs by Combining Burn-In and System Level Test Fault-Aware Performance Assessment Approach for Embedded Networks On the in-field test of the GPGPU scheduler memory Radiation- and Temperature-Induced Fault Modeling and Simulation in BiCMOS LSI’s Components using RAD-THERM TCAD Subsystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1