气体和烟雾防护服务单位在不适宜呼吸的环境中扑灭电力设施持久火灾时的战术可能性

V. Gabdullin
{"title":"气体和烟雾防护服务单位在不适宜呼吸的环境中扑灭电力设施持久火灾时的战术可能性","authors":"V. Gabdullin","doi":"10.25257/fe.2022.2.100-108","DOIUrl":null,"url":null,"abstract":"PURPOSE. The analysis of statistical data on fires at power facilities has shown that successful extinguishment of protracted fires in the environment unsuitable for breathing (UBE) requires continuous activities on the part of gas and smoke protection service units (GSPS). The duration of a firefighter’s stay in the UBE is determined by the time of the protective functioning of personal protective equipment for respiratory and vision organs. It is quite natural to conclude that it should exceed fire extinguishing time. The article considers the current method of operation of GSPS units at large and protracted fires, and also describes an experimental study to ensure the continuity of fire extinguishment by changing the units at the fire seat. The study was carried out in order to determine the number of GSPS units required to ensure the continuity of extinguishing developed fires at the premises of a large power facility at different depths of the combustion zone and the length of the UBE, which must be overcome to reach the positions of supplying fire extinguishing agents. The applicability of the developed self-contained set of continuous air supply to firefighters’ breathing apparatus has been studied, which can be used as the positions of fire extinguishing agents supply are determined. METHODS. The required number of GSPS units was experimentally determined to ensure the continuity of fire extinguishment at a certain distance of the fire seat from entering the UBE. The applicability of the developed autonomous set of continuous air supply was studied. FINDINGS. The results of the experimental study allow concluding that it is possible to ensure fire extinguishing continuity at a power object, provided the change of units takes place at the point of fire extinguishing agents charge, that is, at the fire seat. Thus interruptions in fire extinguishment, which occur when changing units takes place in the open air will be avoided. To cut expenses and reduce the number of people involved in extinguishing large fires, it is recommended to use two cylinders apparatus, since with a deep penetration of a unit into the UBE, one cylinder, as a rule, is enough for 5–10 minutes of effective extinguishment, while the rest of the time is used to overcome the way to the fire seat. RESEARCH APPLICATION FIELD. The findings of the study are planned to be used both in the educational process and in the practical activities of GSPS of the special fire departments protecting nuclear power plants and other power objects. Conclusions. The data obtained allow us to conclude that it is possible to ensure the continuity of fire extinguishment at a power facility in the following way: 1) by changing units at the place where fire extinguishing agents are supplied, that is, at the fire seat; 2) when using an autonomous set of continuous air supply to firefighters’ breathing apparatus. The set provides the GSPS unit with medium-pressure air and allows you to work in the UBE at the place of fire extinguishing agents supply for an unlimited time.","PeriodicalId":105490,"journal":{"name":"Fire and Emergencies: prevention, elimination","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tactical possibilities of gas and smoke protection service units when extinguishing protracted fires at power facilities in the environment unsuitable for breathing\",\"authors\":\"V. Gabdullin\",\"doi\":\"10.25257/fe.2022.2.100-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE. The analysis of statistical data on fires at power facilities has shown that successful extinguishment of protracted fires in the environment unsuitable for breathing (UBE) requires continuous activities on the part of gas and smoke protection service units (GSPS). The duration of a firefighter’s stay in the UBE is determined by the time of the protective functioning of personal protective equipment for respiratory and vision organs. It is quite natural to conclude that it should exceed fire extinguishing time. The article considers the current method of operation of GSPS units at large and protracted fires, and also describes an experimental study to ensure the continuity of fire extinguishment by changing the units at the fire seat. The study was carried out in order to determine the number of GSPS units required to ensure the continuity of extinguishing developed fires at the premises of a large power facility at different depths of the combustion zone and the length of the UBE, which must be overcome to reach the positions of supplying fire extinguishing agents. The applicability of the developed self-contained set of continuous air supply to firefighters’ breathing apparatus has been studied, which can be used as the positions of fire extinguishing agents supply are determined. METHODS. The required number of GSPS units was experimentally determined to ensure the continuity of fire extinguishment at a certain distance of the fire seat from entering the UBE. The applicability of the developed autonomous set of continuous air supply was studied. FINDINGS. The results of the experimental study allow concluding that it is possible to ensure fire extinguishing continuity at a power object, provided the change of units takes place at the point of fire extinguishing agents charge, that is, at the fire seat. Thus interruptions in fire extinguishment, which occur when changing units takes place in the open air will be avoided. To cut expenses and reduce the number of people involved in extinguishing large fires, it is recommended to use two cylinders apparatus, since with a deep penetration of a unit into the UBE, one cylinder, as a rule, is enough for 5–10 minutes of effective extinguishment, while the rest of the time is used to overcome the way to the fire seat. RESEARCH APPLICATION FIELD. The findings of the study are planned to be used both in the educational process and in the practical activities of GSPS of the special fire departments protecting nuclear power plants and other power objects. Conclusions. The data obtained allow us to conclude that it is possible to ensure the continuity of fire extinguishment at a power facility in the following way: 1) by changing units at the place where fire extinguishing agents are supplied, that is, at the fire seat; 2) when using an autonomous set of continuous air supply to firefighters’ breathing apparatus. The set provides the GSPS unit with medium-pressure air and allows you to work in the UBE at the place of fire extinguishing agents supply for an unlimited time.\",\"PeriodicalId\":105490,\"journal\":{\"name\":\"Fire and Emergencies: prevention, elimination\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Emergencies: prevention, elimination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25257/fe.2022.2.100-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Emergencies: prevention, elimination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25257/fe.2022.2.100-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的。对电力设施火灾统计数据的分析表明,在不适宜呼吸的环境中成功扑灭持久火灾需要气体和烟雾保护服务单位(GSPS)的持续活动。消防员在UBE中停留的时间由个人防护装备对呼吸和视觉器官的防护功能的时间决定。很自然地得出结论,它应该超过灭火时间。本文考虑了目前大型和持久火灾中GSPS装置的操作方法,并描述了通过更换火场装置来确保灭火连续性的实验研究。进行这项研究的目的是确定为确保在燃烧区不同深度的大型电力设施的房地连续扑灭发展起来的火灾所需要的地源热泵装置的数量和为达到提供灭火剂的位置所必须克服的超隔层的长度。研究了研制的自备式连续送风装置在消防员呼吸器上的适用性,可作为确定灭火剂送风位置的依据。方法。实验确定了所需的GSPS单元数,以确保在进入UBE的火座一定距离内灭火的连续性。对研制的自动连续送风装置的适用性进行了研究。发现。实验研究的结果可以得出结论,如果在灭火剂充注点,即在火座处更换单元,则可以确保在电源对象上的灭火连续性。这样就可以避免在室外更换机组时发生的灭火中断。为了节省开支和减少参与灭火的人员数量,建议使用两个气瓶装置,因为随着一个装置深入UBE,一个气瓶通常足以进行5-10分钟的有效灭火,而其余的时间则用来克服通往火座的道路。研究应用领域。计划将研究结果用于保护核电站和其他电力物体的特殊消防部门的GSPS的教育过程和实际活动。结论。根据所获得的数据,我们可以得出结论,可以通过以下方式确保电力设施灭火的连续性:1)在提供灭火剂的地方,即在火座更换单元;2)当使用一套自动连续供气的消防员呼吸器时。该套装为GSPS机组提供中压空气,使您可以在灭火药剂供应地点的UBE中无限时间工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tactical possibilities of gas and smoke protection service units when extinguishing protracted fires at power facilities in the environment unsuitable for breathing
PURPOSE. The analysis of statistical data on fires at power facilities has shown that successful extinguishment of protracted fires in the environment unsuitable for breathing (UBE) requires continuous activities on the part of gas and smoke protection service units (GSPS). The duration of a firefighter’s stay in the UBE is determined by the time of the protective functioning of personal protective equipment for respiratory and vision organs. It is quite natural to conclude that it should exceed fire extinguishing time. The article considers the current method of operation of GSPS units at large and protracted fires, and also describes an experimental study to ensure the continuity of fire extinguishment by changing the units at the fire seat. The study was carried out in order to determine the number of GSPS units required to ensure the continuity of extinguishing developed fires at the premises of a large power facility at different depths of the combustion zone and the length of the UBE, which must be overcome to reach the positions of supplying fire extinguishing agents. The applicability of the developed self-contained set of continuous air supply to firefighters’ breathing apparatus has been studied, which can be used as the positions of fire extinguishing agents supply are determined. METHODS. The required number of GSPS units was experimentally determined to ensure the continuity of fire extinguishment at a certain distance of the fire seat from entering the UBE. The applicability of the developed autonomous set of continuous air supply was studied. FINDINGS. The results of the experimental study allow concluding that it is possible to ensure fire extinguishing continuity at a power object, provided the change of units takes place at the point of fire extinguishing agents charge, that is, at the fire seat. Thus interruptions in fire extinguishment, which occur when changing units takes place in the open air will be avoided. To cut expenses and reduce the number of people involved in extinguishing large fires, it is recommended to use two cylinders apparatus, since with a deep penetration of a unit into the UBE, one cylinder, as a rule, is enough for 5–10 minutes of effective extinguishment, while the rest of the time is used to overcome the way to the fire seat. RESEARCH APPLICATION FIELD. The findings of the study are planned to be used both in the educational process and in the practical activities of GSPS of the special fire departments protecting nuclear power plants and other power objects. Conclusions. The data obtained allow us to conclude that it is possible to ensure the continuity of fire extinguishment at a power facility in the following way: 1) by changing units at the place where fire extinguishing agents are supplied, that is, at the fire seat; 2) when using an autonomous set of continuous air supply to firefighters’ breathing apparatus. The set provides the GSPS unit with medium-pressure air and allows you to work in the UBE at the place of fire extinguishing agents supply for an unlimited time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of strength characteristics of long-term and rapidly deployable geodesic dome shelters for the needs of EMERCOM airmobile groups Choosing of fire extinguishing medium in coal mines on the basis of accident autocorrelation analysis Emergency risk reduction technologies at tunnel type road junctions Method of improving systems ensuring reduction of fire and industrial hazard Method of determining optimal time for professional training of fire-rescue units chiefs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1