基于大特征集和单镜头相似度的人脸验证

Huimin Guo, W. R. Schwartz, L. Davis
{"title":"基于大特征集和单镜头相似度的人脸验证","authors":"Huimin Guo, W. R. Schwartz, L. Davis","doi":"10.1109/IJCB.2011.6117498","DOIUrl":null,"url":null,"abstract":"We present a method for face verification that combines Partial Least Squares (PLS) and the One-Shot similarity model[28]. First, a large feature set combining shape, texture and color information is used to describe a face. Then PLS is applied to reduce the dimensionality of the feature set with multi-channel feature weighting. This provides a discriminative facial descriptor. PLS regression is used to compute the similarity score of an image pair by One-Shot learning. Given two feature vector representing face images, the One-Shot algorithm learns discriminative models exclusively for the vectors being compared. A small set of unlabeled images, not containing images belonging to the people being compared, is used as a reference (negative) set. The approach is evaluated on the Labeled Face in the Wild (LFW) benchmark and shows very comparable results to the state-of-the-art methods (achieving 86.12% classification accuracy) while maintaining simplicity and good generalization ability.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Face verification using large feature sets and one shot similarity\",\"authors\":\"Huimin Guo, W. R. Schwartz, L. Davis\",\"doi\":\"10.1109/IJCB.2011.6117498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for face verification that combines Partial Least Squares (PLS) and the One-Shot similarity model[28]. First, a large feature set combining shape, texture and color information is used to describe a face. Then PLS is applied to reduce the dimensionality of the feature set with multi-channel feature weighting. This provides a discriminative facial descriptor. PLS regression is used to compute the similarity score of an image pair by One-Shot learning. Given two feature vector representing face images, the One-Shot algorithm learns discriminative models exclusively for the vectors being compared. A small set of unlabeled images, not containing images belonging to the people being compared, is used as a reference (negative) set. The approach is evaluated on the Labeled Face in the Wild (LFW) benchmark and shows very comparable results to the state-of-the-art methods (achieving 86.12% classification accuracy) while maintaining simplicity and good generalization ability.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了一种结合偏最小二乘(PLS)和一次性相似性模型的人脸验证方法[28]。首先,利用结合形状、纹理和颜色信息的大型特征集对人脸进行描述。然后利用PLS对特征集进行多通道特征加权降维。这提供了一个判别性的面部描述符。采用单次学习的方法,利用PLS回归计算图像对的相似度得分。给定两个代表人脸图像的特征向量,One-Shot算法专门为被比较的向量学习判别模型。一小组未标记的图像,不包含属于被比较的人的图像,被用作参考(否定)集。该方法在Labeled Face in The Wild (LFW)基准上进行了评估,显示出与最先进的方法非常相似的结果(达到86.12%的分类准确率),同时保持了简单性和良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face verification using large feature sets and one shot similarity
We present a method for face verification that combines Partial Least Squares (PLS) and the One-Shot similarity model[28]. First, a large feature set combining shape, texture and color information is used to describe a face. Then PLS is applied to reduce the dimensionality of the feature set with multi-channel feature weighting. This provides a discriminative facial descriptor. PLS regression is used to compute the similarity score of an image pair by One-Shot learning. Given two feature vector representing face images, the One-Shot algorithm learns discriminative models exclusively for the vectors being compared. A small set of unlabeled images, not containing images belonging to the people being compared, is used as a reference (negative) set. The approach is evaluated on the Labeled Face in the Wild (LFW) benchmark and shows very comparable results to the state-of-the-art methods (achieving 86.12% classification accuracy) while maintaining simplicity and good generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1