Fernando H. Calderon, Li-Kai Cheng, Ming-Jen Lin, Yen-Hao Huang, Yi-Shin Chen
{"title":"基于内容的社交媒体平台回声室检测","authors":"Fernando H. Calderon, Li-Kai Cheng, Ming-Jen Lin, Yen-Hao Huang, Yi-Shin Chen","doi":"10.1145/3341161.3343689","DOIUrl":null,"url":null,"abstract":"“Echo chamber” is a metaphorical description of a situation in which beliefs are amplified inside a closed network, and social media platforms provide an environment that is well-suited to this phenomenon. Depending on the scale of the echo chamber, a user's judgment of different opinions may be restricted. The current study focuses on detecting echoing interaction between a post and its related comments to then quantify the predominating degree of echo chamber behavior on Facebook pages. To enable such detection, two content-based features are designed; the first aids stance representation of comments on a particular discussion topic, and the second focuses on the type and intensity of emotion elicited by a subject. This work also introduces data-driven semi-supervised approaches to extract such features from social media data.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Content-Based Echo Chamber Detection on Social Media Platforms\",\"authors\":\"Fernando H. Calderon, Li-Kai Cheng, Ming-Jen Lin, Yen-Hao Huang, Yi-Shin Chen\",\"doi\":\"10.1145/3341161.3343689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Echo chamber” is a metaphorical description of a situation in which beliefs are amplified inside a closed network, and social media platforms provide an environment that is well-suited to this phenomenon. Depending on the scale of the echo chamber, a user's judgment of different opinions may be restricted. The current study focuses on detecting echoing interaction between a post and its related comments to then quantify the predominating degree of echo chamber behavior on Facebook pages. To enable such detection, two content-based features are designed; the first aids stance representation of comments on a particular discussion topic, and the second focuses on the type and intensity of emotion elicited by a subject. This work also introduces data-driven semi-supervised approaches to extract such features from social media data.\",\"PeriodicalId\":403360,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341161.3343689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3343689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-Based Echo Chamber Detection on Social Media Platforms
“Echo chamber” is a metaphorical description of a situation in which beliefs are amplified inside a closed network, and social media platforms provide an environment that is well-suited to this phenomenon. Depending on the scale of the echo chamber, a user's judgment of different opinions may be restricted. The current study focuses on detecting echoing interaction between a post and its related comments to then quantify the predominating degree of echo chamber behavior on Facebook pages. To enable such detection, two content-based features are designed; the first aids stance representation of comments on a particular discussion topic, and the second focuses on the type and intensity of emotion elicited by a subject. This work also introduces data-driven semi-supervised approaches to extract such features from social media data.