鲁棒视频监控的多模块交换与融合

S. Barotti, L. Lombardi, P. Lombardi
{"title":"鲁棒视频监控的多模块交换与融合","authors":"S. Barotti, L. Lombardi, P. Lombardi","doi":"10.1109/ICIAP.2003.1234060","DOIUrl":null,"url":null,"abstract":"In this paper, we address two of the common faults of indoor background modeling, namely the light switch and the bootstrapping problems. Light switch concerns sudden changes in lighting conditions that cause the failure of a background model of the scene. Bootstrapping problems occur when a training sequence free of moving objects is not available for model building. Our study investigates how rearrangements in the structure of multi-modular vision systems can improve the system performance in a changing environment. In other words, we want to introduce in the system the capability to select the most reliable method for extracting useful information among those available, and to exclude inadequate modules from the flow of signal analysis.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-module switching and fusion for robust video surveillance\",\"authors\":\"S. Barotti, L. Lombardi, P. Lombardi\",\"doi\":\"10.1109/ICIAP.2003.1234060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address two of the common faults of indoor background modeling, namely the light switch and the bootstrapping problems. Light switch concerns sudden changes in lighting conditions that cause the failure of a background model of the scene. Bootstrapping problems occur when a training sequence free of moving objects is not available for model building. Our study investigates how rearrangements in the structure of multi-modular vision systems can improve the system performance in a changing environment. In other words, we want to introduce in the system the capability to select the most reliable method for extracting useful information among those available, and to exclude inadequate modules from the flow of signal analysis.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文解决了室内背景建模中常见的两个问题,即灯光开关问题和自启动问题。灯光开关涉及光照条件的突然变化,导致场景的背景模型失效。当没有运动对象的训练序列不能用于模型构建时,就会出现自举问题。我们的研究探讨了多模块视觉系统结构中的重排如何在不断变化的环境中提高系统性能。换句话说,我们希望在系统中引入一种能力,即从可用的信息中选择最可靠的方法来提取有用的信息,并从信号分析流程中排除不适当的模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-module switching and fusion for robust video surveillance
In this paper, we address two of the common faults of indoor background modeling, namely the light switch and the bootstrapping problems. Light switch concerns sudden changes in lighting conditions that cause the failure of a background model of the scene. Bootstrapping problems occur when a training sequence free of moving objects is not available for model building. Our study investigates how rearrangements in the structure of multi-modular vision systems can improve the system performance in a changing environment. In other words, we want to introduce in the system the capability to select the most reliable method for extracting useful information among those available, and to exclude inadequate modules from the flow of signal analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1