{"title":"多群体项目反应理论模型的信度系数","authors":"Björn Andersson, Hao Luo, Kseniia Marcq","doi":"10.1111/bmsp.12269","DOIUrl":null,"url":null,"abstract":"<p>Reliability of scores from psychological or educational assessments provides important information regarding the precision of measurement. The reliability of scores is however population dependent and may vary across groups. In item response theory, this population dependence can be attributed to differential item functioning or to differences in the latent distributions between groups and needs to be accounted for when estimating the reliability of scores for different groups. Here, we introduce group-specific and overall reliability coefficients for sum scores and maximum likelihood ability estimates defined by a multiple group item response theory model. We derive confidence intervals using asymptotic theory and evaluate the empirical properties of estimators and the confidence intervals in a simulation study. The results show that the estimators are largely unbiased and that the confidence intervals are accurate with moderately large sample sizes. We exemplify the approach with the Montreal Cognitive Assessment (MoCA) in two groups defined by education level and give recommendations for applied work.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 2","pages":"395-410"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12269","citationCount":"2","resultStr":"{\"title\":\"Reliability coefficients for multiple group item response theory models\",\"authors\":\"Björn Andersson, Hao Luo, Kseniia Marcq\",\"doi\":\"10.1111/bmsp.12269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reliability of scores from psychological or educational assessments provides important information regarding the precision of measurement. The reliability of scores is however population dependent and may vary across groups. In item response theory, this population dependence can be attributed to differential item functioning or to differences in the latent distributions between groups and needs to be accounted for when estimating the reliability of scores for different groups. Here, we introduce group-specific and overall reliability coefficients for sum scores and maximum likelihood ability estimates defined by a multiple group item response theory model. We derive confidence intervals using asymptotic theory and evaluate the empirical properties of estimators and the confidence intervals in a simulation study. The results show that the estimators are largely unbiased and that the confidence intervals are accurate with moderately large sample sizes. We exemplify the approach with the Montreal Cognitive Assessment (MoCA) in two groups defined by education level and give recommendations for applied work.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"75 2\",\"pages\":\"395-410\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12269\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12269\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12269","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Reliability coefficients for multiple group item response theory models
Reliability of scores from psychological or educational assessments provides important information regarding the precision of measurement. The reliability of scores is however population dependent and may vary across groups. In item response theory, this population dependence can be attributed to differential item functioning or to differences in the latent distributions between groups and needs to be accounted for when estimating the reliability of scores for different groups. Here, we introduce group-specific and overall reliability coefficients for sum scores and maximum likelihood ability estimates defined by a multiple group item response theory model. We derive confidence intervals using asymptotic theory and evaluate the empirical properties of estimators and the confidence intervals in a simulation study. The results show that the estimators are largely unbiased and that the confidence intervals are accurate with moderately large sample sizes. We exemplify the approach with the Montreal Cognitive Assessment (MoCA) in two groups defined by education level and give recommendations for applied work.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.