人脸自动识别中图像分辨率和姿态的实证研究

Faizan Munawar, Uzair Khan, A. Shahzad, Mahmood Ul Haq, Z. Mahmood, S. Khattak, Gul Zameen Khan
{"title":"人脸自动识别中图像分辨率和姿态的实证研究","authors":"Faizan Munawar, Uzair Khan, A. Shahzad, Mahmood Ul Haq, Z. Mahmood, S. Khattak, Gul Zameen Khan","doi":"10.1109/IBCAST.2019.8667233","DOIUrl":null,"url":null,"abstract":"Face image resolution and pose are two important factors that severely degrade the recognition ability. This paper presents a comparison of (i) the Wavelet Transform, (ii) the 2DPCA, (iii) the AdaBoost-LDA, and (iv) Fisherfaces based face recognition algorithms. Simulation results on the Multi-PIE database show that the 2DPCA face recognition algorithm can be reliably used for extremely low face image resolution of 15×15 pixels and from frontal (0°) to +35° of pose variation in near-real time. Whereas for high face image resolution of 40×40 pixels and up to 251×231 pixels, the Fisherfaces yields high accuracy across four different pose variation at the cost of much higher computation. Moreover, the recognition rate of the AdaBoost-LDA is unaffected by the image resolution from 251×231 down to 15×15 pixels. In addition, time cost comparison is also shown.","PeriodicalId":335329,"journal":{"name":"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Empirical Study of Image Resolution and Pose on Automatic Face Recognition\",\"authors\":\"Faizan Munawar, Uzair Khan, A. Shahzad, Mahmood Ul Haq, Z. Mahmood, S. Khattak, Gul Zameen Khan\",\"doi\":\"10.1109/IBCAST.2019.8667233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face image resolution and pose are two important factors that severely degrade the recognition ability. This paper presents a comparison of (i) the Wavelet Transform, (ii) the 2DPCA, (iii) the AdaBoost-LDA, and (iv) Fisherfaces based face recognition algorithms. Simulation results on the Multi-PIE database show that the 2DPCA face recognition algorithm can be reliably used for extremely low face image resolution of 15×15 pixels and from frontal (0°) to +35° of pose variation in near-real time. Whereas for high face image resolution of 40×40 pixels and up to 251×231 pixels, the Fisherfaces yields high accuracy across four different pose variation at the cost of much higher computation. Moreover, the recognition rate of the AdaBoost-LDA is unaffected by the image resolution from 251×231 down to 15×15 pixels. In addition, time cost comparison is also shown.\",\"PeriodicalId\":335329,\"journal\":{\"name\":\"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBCAST.2019.8667233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2019.8667233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸图像分辨率和姿态是严重影响人脸识别能力的两个重要因素。本文介绍了(i)小波变换,(ii) 2DPCA, (iii) AdaBoost-LDA和(iv)基于fishfaces的人脸识别算法的比较。在Multi-PIE数据库上的仿真结果表明,2DPCA人脸识别算法可以可靠地用于15×15像素的极低人脸图像分辨率和正面(0°)到+35°的近实时姿态变化。然而,对于40×40像素和251×231像素的高人脸图像分辨率,Fisherfaces在四种不同的姿势变化中产生高精度,但计算成本要高得多。此外,AdaBoost-LDA的识别率不受图像分辨率从251×231到15×15像素的影响。此外,还显示了时间成本比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study of Image Resolution and Pose on Automatic Face Recognition
Face image resolution and pose are two important factors that severely degrade the recognition ability. This paper presents a comparison of (i) the Wavelet Transform, (ii) the 2DPCA, (iii) the AdaBoost-LDA, and (iv) Fisherfaces based face recognition algorithms. Simulation results on the Multi-PIE database show that the 2DPCA face recognition algorithm can be reliably used for extremely low face image resolution of 15×15 pixels and from frontal (0°) to +35° of pose variation in near-real time. Whereas for high face image resolution of 40×40 pixels and up to 251×231 pixels, the Fisherfaces yields high accuracy across four different pose variation at the cost of much higher computation. Moreover, the recognition rate of the AdaBoost-LDA is unaffected by the image resolution from 251×231 down to 15×15 pixels. In addition, time cost comparison is also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Survey of Techniques and Technologies Used in Transmit Path of Transmit Receive Module of AESA Radar Testing-based Model Learning Approach for Legacy Components Pic Microcontroller Based Power Factor Correction for both Leading and Lagging Loads using Compensation Method Speed Tracking of Spark Ignition Engines using Higher Order Sliding Mode Control Survey of Authentication Schemes for Health Monitoring: A Subset of Cyber Physical System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1