有限潜在松弛:为分层设计的双vt分配启用时间预算

Jun Seomun, Seungwhun Paik, Youngsoo Shin
{"title":"有限潜在松弛:为分层设计的双vt分配启用时间预算","authors":"Jun Seomun, Seungwhun Paik, Youngsoo Shin","doi":"10.1109/ASPDAC.2010.5419817","DOIUrl":null,"url":null,"abstract":"Time budgeting, which assigns timing assertion at block boundary, is a crucial step in hierarchical design. The proportion of high- and low-Vt gates of each block, which determines overall leakage power consumption, is dictated by timing assertion, yet dual-Vt allocation is not taken into account during conventional time budgeting. Bounded potential slack is introduced as a measure of dual-Vt allocation, and is experimentally shown to be strongly correlated with the percentage of high-Vt gates. A new time budgeting is proposed with objective of achieving bounded potential slack, which is formulated as a linear programming problem. In experiments with example hierarchical designs implemented in 45-nm commercial technology, the proposed time budgeting reduced leakage power by 32% on average compared to conventional time budgeting, when both are followed by the same dual-Vt allocation. The time budgeting is also applied to voltage island design, where each block can have its own Vdd with mix of high- and low-Vt gates.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounded potential slack: Enabling time budgeting for dual-Vt allocation of hierarchical design\",\"authors\":\"Jun Seomun, Seungwhun Paik, Youngsoo Shin\",\"doi\":\"10.1109/ASPDAC.2010.5419817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time budgeting, which assigns timing assertion at block boundary, is a crucial step in hierarchical design. The proportion of high- and low-Vt gates of each block, which determines overall leakage power consumption, is dictated by timing assertion, yet dual-Vt allocation is not taken into account during conventional time budgeting. Bounded potential slack is introduced as a measure of dual-Vt allocation, and is experimentally shown to be strongly correlated with the percentage of high-Vt gates. A new time budgeting is proposed with objective of achieving bounded potential slack, which is formulated as a linear programming problem. In experiments with example hierarchical designs implemented in 45-nm commercial technology, the proposed time budgeting reduced leakage power by 32% on average compared to conventional time budgeting, when both are followed by the same dual-Vt allocation. The time budgeting is also applied to voltage island design, where each block can have its own Vdd with mix of high- and low-Vt gates.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间预算是分层设计的关键步骤,它在分块边界分配时间断言。每个模块的高、低电压门的比例决定了总泄漏功耗,这是由定时断言决定的,而传统的时间预算中没有考虑双电压门的分配。引入有界电位松弛作为双vt分配的度量,实验表明,有界电位松弛与高vt门的百分比密切相关。提出了一种新的以实现有界潜在松弛为目标的时间预算方法,将其表述为线性规划问题。在45纳米商用技术的分层设计示例实验中,当采用相同的双vt分配时,与传统的时间预算相比,所提出的时间预算平均减少了32%的泄漏功率。时间预算也适用于电压岛设计,其中每个模块可以有自己的Vdd与高、低电压门混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bounded potential slack: Enabling time budgeting for dual-Vt allocation of hierarchical design
Time budgeting, which assigns timing assertion at block boundary, is a crucial step in hierarchical design. The proportion of high- and low-Vt gates of each block, which determines overall leakage power consumption, is dictated by timing assertion, yet dual-Vt allocation is not taken into account during conventional time budgeting. Bounded potential slack is introduced as a measure of dual-Vt allocation, and is experimentally shown to be strongly correlated with the percentage of high-Vt gates. A new time budgeting is proposed with objective of achieving bounded potential slack, which is formulated as a linear programming problem. In experiments with example hierarchical designs implemented in 45-nm commercial technology, the proposed time budgeting reduced leakage power by 32% on average compared to conventional time budgeting, when both are followed by the same dual-Vt allocation. The time budgeting is also applied to voltage island design, where each block can have its own Vdd with mix of high- and low-Vt gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform modeling for exploration and synthesis Application-specific 3D Network-on-Chip design using simulated allocation Rule-based optimization of reversible circuits An extension of the generalized Hamiltonian method to S-parameter descriptor systems Adaptive power management for real-time event streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1