Renato Dilli, Huberto Kaiser Filho, A. Pernas, A. Yamin
{"title":"EXEHDA-RR:机器学习和MCDA与语义网在物联网资源分类中的应用","authors":"Renato Dilli, Huberto Kaiser Filho, A. Pernas, A. Yamin","doi":"10.1145/3126858.3126880","DOIUrl":null,"url":null,"abstract":"Currently, a lot of resources are connected to the Internet, many simultaneously requesting and providing services. The adequate selection of resources that best meet the demands of users with a broad range of options has been a relevant and current research challenge. Based on the non-functional parameters of QoS play a significant role in the ranking of these resources according to the services they offer. This paper aims to aggregate machine learning in the pre-classification of EXEHDA middleware resources, to reduce the computational cost generated by MCDA algorithms. We presented the proposed software architecture (EXEHDA-RR), and the obtained results with the integration of machine learning in the classification process are promissing, and indicate to the research continuation.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EXEHDA-RR: Machine Learning and MCDA with Semantic Web in IoT Resources Classification\",\"authors\":\"Renato Dilli, Huberto Kaiser Filho, A. Pernas, A. Yamin\",\"doi\":\"10.1145/3126858.3126880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, a lot of resources are connected to the Internet, many simultaneously requesting and providing services. The adequate selection of resources that best meet the demands of users with a broad range of options has been a relevant and current research challenge. Based on the non-functional parameters of QoS play a significant role in the ranking of these resources according to the services they offer. This paper aims to aggregate machine learning in the pre-classification of EXEHDA middleware resources, to reduce the computational cost generated by MCDA algorithms. We presented the proposed software architecture (EXEHDA-RR), and the obtained results with the integration of machine learning in the classification process are promissing, and indicate to the research continuation.\",\"PeriodicalId\":338362,\"journal\":{\"name\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3126858.3126880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3126880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXEHDA-RR: Machine Learning and MCDA with Semantic Web in IoT Resources Classification
Currently, a lot of resources are connected to the Internet, many simultaneously requesting and providing services. The adequate selection of resources that best meet the demands of users with a broad range of options has been a relevant and current research challenge. Based on the non-functional parameters of QoS play a significant role in the ranking of these resources according to the services they offer. This paper aims to aggregate machine learning in the pre-classification of EXEHDA middleware resources, to reduce the computational cost generated by MCDA algorithms. We presented the proposed software architecture (EXEHDA-RR), and the obtained results with the integration of machine learning in the classification process are promissing, and indicate to the research continuation.