{"title":"一种宽带宽扫描相控阵天线元件","authors":"Li Yang, Liu Zhihui","doi":"10.1109/iwem53379.2021.9790413","DOIUrl":null,"url":null,"abstract":"This paper introduces a Vivaldi-type wide-band and wide-scan all-metal phased array antenna. By using multi-segment feeding structure derived from binomial matching transformer, together with absorbing material impedance loading technology, the bandwidth extends towards low frequency and wide-scan properties is realized. In this paper, theory and design methodology are formulated, and followed by a concise set of design guidelines. A test array of 15*18 elements is fabricated, and the measured results show that the vswr <2.5 within 45° scan range from 6.5 to 12GHz is obtained. As seen, the antenna has good wide-band and wide-scan capabilities, along with its good manufacturability and high power withstand, the antenna is potentially suitable for applications in phased array radar field.","PeriodicalId":141204,"journal":{"name":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Element of Wide-band and Wide-scan Phased Array Antenna\",\"authors\":\"Li Yang, Liu Zhihui\",\"doi\":\"10.1109/iwem53379.2021.9790413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a Vivaldi-type wide-band and wide-scan all-metal phased array antenna. By using multi-segment feeding structure derived from binomial matching transformer, together with absorbing material impedance loading technology, the bandwidth extends towards low frequency and wide-scan properties is realized. In this paper, theory and design methodology are formulated, and followed by a concise set of design guidelines. A test array of 15*18 elements is fabricated, and the measured results show that the vswr <2.5 within 45° scan range from 6.5 to 12GHz is obtained. As seen, the antenna has good wide-band and wide-scan capabilities, along with its good manufacturability and high power withstand, the antenna is potentially suitable for applications in phased array radar field.\",\"PeriodicalId\":141204,\"journal\":{\"name\":\"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iwem53379.2021.9790413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iwem53379.2021.9790413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Element of Wide-band and Wide-scan Phased Array Antenna
This paper introduces a Vivaldi-type wide-band and wide-scan all-metal phased array antenna. By using multi-segment feeding structure derived from binomial matching transformer, together with absorbing material impedance loading technology, the bandwidth extends towards low frequency and wide-scan properties is realized. In this paper, theory and design methodology are formulated, and followed by a concise set of design guidelines. A test array of 15*18 elements is fabricated, and the measured results show that the vswr <2.5 within 45° scan range from 6.5 to 12GHz is obtained. As seen, the antenna has good wide-band and wide-scan capabilities, along with its good manufacturability and high power withstand, the antenna is potentially suitable for applications in phased array radar field.