Nurul Anisa, Naomi Nessyana Debataraja, Shantika Martha
{"title":"ESTIMASI MODEL REGRESI NONPARAMETRIK KERNEL MENGGUNAKAN ESTIMATOR NADARAYA-WATSON","authors":"Nurul Anisa, Naomi Nessyana Debataraja, Shantika Martha","doi":"10.26418/bbimst.v8i4.35870","DOIUrl":null,"url":null,"abstract":"Pendekatan regresi nonparametrik dilakukan untuk memodelkan data yang tidak diketahui bentuk fungsinya. Salah satu regresi nonparametrik yang sering digunakan adalah regresi kernel. Tujuan penelitian ini adalah untuk mengestimasi model regresi nonparametrik menggunakan regresi kernel dengan estimator Nadaraya-Watson pada data indeks pembangunan manusia di Indonesia. Berdasarkan hasil analisis yang telah dilakukan, dapat disimpulkan bahwa untuk data indeks pembangunan manusia diperoleh bandwitdh optimal dengan estimator Nadaraya-Watson sebesar 1,384884. Hasil estimasi tersebut memperoleh nilai koefisien determinasi sebesar 63,2% dan menghasilkan nilai Mean Absolute Percentage Error (MAPE) sebesar 2,5% yang berarti bahwa kemampuan estimasi menggunakan regresi nonparametrik kernel sangat baik.Kata Kunci: regresi kernel, bandwidth, Gaussian.","PeriodicalId":265420,"journal":{"name":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/bbimst.v8i4.35870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

进行非线性回归方法来模拟其功能形式未知的数据。常用的非参数回归之一是内核回归。本研究的目的是利用核心回归与印尼人类发展指数数据估计的估计,建立一个非参数回归模型。根据所作的分析,可以得出结论,在bandwitdh的数据索引中,以1.384884为最佳估计获得了bandwitdh人类发展指数。预测结果获得了63.2%的确定性系数,并产生了绝对峰值值(MAPE)值2.5%,这意味着估算能力使用内核的非参数回归非常好。关键词:内核回归,带宽,高斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESTIMASI MODEL REGRESI NONPARAMETRIK KERNEL MENGGUNAKAN ESTIMATOR NADARAYA-WATSON
Pendekatan regresi nonparametrik dilakukan untuk memodelkan data yang tidak diketahui bentuk fungsinya. Salah satu regresi nonparametrik yang sering digunakan adalah regresi kernel. Tujuan penelitian ini adalah untuk mengestimasi model regresi nonparametrik menggunakan regresi kernel dengan estimator Nadaraya-Watson pada data indeks pembangunan manusia di Indonesia. Berdasarkan hasil analisis yang telah dilakukan, dapat disimpulkan bahwa untuk data indeks pembangunan manusia diperoleh bandwitdh optimal dengan estimator Nadaraya-Watson sebesar 1,384884. Hasil estimasi tersebut memperoleh nilai koefisien determinasi sebesar 63,2% dan menghasilkan nilai Mean Absolute Percentage Error (MAPE) sebesar 2,5% yang berarti bahwa kemampuan estimasi menggunakan regresi nonparametrik kernel sangat baik.Kata Kunci: regresi kernel, bandwidth, Gaussian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PERAMALAN VOLATILITAS SAHAM MENGGUNAKAN MODEL THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY ANALISIS DAMPAK PROGRAM TERAPI HIV-AIDS PADA MODEL PENYEBARAN PENYAKIT HIV-AIDS DENGAN POPULASI TERBUKA PENENTUAN GARIS KEMISKINAN PROVINSI MENGGUNAKAN METODE MULTIPLE CLASSIFICATION ANALYSIS METODE ANALISIS KORESPONDENSI BERGANDA UNTUK MENGIDENTIFIKASI KARAKTERISTIK MAHASISWA BIDIKMISI FMIPA UNTAN PENENTUAN MODEL TERBAIK PADA REGRESI SPLINE MENGGUNAKAN GENERALIZED CROSS VALIDATION (GCV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1