{"title":"利用GaN HEMT技术设计宽带高功率放大器","authors":"Doğancan Turt, A. Akgiray","doi":"10.1109/ICRAMET53537.2021.9650475","DOIUrl":null,"url":null,"abstract":"This paper presents the design and measurements of a broadband GaN HEMT power amplifier intended for point-to-point radios, electronic warfare systems, and test and measurement applications. The proposed power amplifier is fabricated, and small/large-signal measurements are collected. Fabricated design is conducted for an input power of 26 dBm and obtained between 39.6 - 40.9 dBm output power. Power added efficiency (PAE) of 45.9 % to 61.4 % is reached over the band (0.5 - 2.5 GHz). In this study, Wolfspeed’s CGH40010F transistor is used in CW mode. In order to decide optimum source and load impedances of the transistor, load- & source-pull simulations are conducted. After load- & source-pull simulations, proper source and load matching networks are established to obtain optimum output power and efficiency values over the band.","PeriodicalId":269759,"journal":{"name":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Broadband High Power Amplifier Design Using GaN HEMT Technology\",\"authors\":\"Doğancan Turt, A. Akgiray\",\"doi\":\"10.1109/ICRAMET53537.2021.9650475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and measurements of a broadband GaN HEMT power amplifier intended for point-to-point radios, electronic warfare systems, and test and measurement applications. The proposed power amplifier is fabricated, and small/large-signal measurements are collected. Fabricated design is conducted for an input power of 26 dBm and obtained between 39.6 - 40.9 dBm output power. Power added efficiency (PAE) of 45.9 % to 61.4 % is reached over the band (0.5 - 2.5 GHz). In this study, Wolfspeed’s CGH40010F transistor is used in CW mode. In order to decide optimum source and load impedances of the transistor, load- & source-pull simulations are conducted. After load- & source-pull simulations, proper source and load matching networks are established to obtain optimum output power and efficiency values over the band.\",\"PeriodicalId\":269759,\"journal\":{\"name\":\"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET53537.2021.9650475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET53537.2021.9650475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Broadband High Power Amplifier Design Using GaN HEMT Technology
This paper presents the design and measurements of a broadband GaN HEMT power amplifier intended for point-to-point radios, electronic warfare systems, and test and measurement applications. The proposed power amplifier is fabricated, and small/large-signal measurements are collected. Fabricated design is conducted for an input power of 26 dBm and obtained between 39.6 - 40.9 dBm output power. Power added efficiency (PAE) of 45.9 % to 61.4 % is reached over the band (0.5 - 2.5 GHz). In this study, Wolfspeed’s CGH40010F transistor is used in CW mode. In order to decide optimum source and load impedances of the transistor, load- & source-pull simulations are conducted. After load- & source-pull simulations, proper source and load matching networks are established to obtain optimum output power and efficiency values over the band.