基于形态学特征提取的心律失常检测

Merve Dogruyol Basar, Soner Kotan, N. Kiliç, A. Akan
{"title":"基于形态学特征提取的心律失常检测","authors":"Merve Dogruyol Basar, Soner Kotan, N. Kiliç, A. Akan","doi":"10.1109/TIPTEKNO.2016.7863065","DOIUrl":null,"url":null,"abstract":"Heart disease is one of the diseases which has highest mortality rate recently. Heart's electrical activity examination and interpretation are very important for the understanding of diseases. In this study, electrocardiogram signals are analyzed, then patient's healthy and arrhythmia beats are extracted. RR, QRS, Skewness and Linear Predictive Coding coefficients of the signals are considered for classification of the data. K-NN, Random SubSpaces, Naive Bayes and K-Star classifiers are used. The highest accuracy is obtained with the K-NN algorithm (98.32%). At the second stage of the K-NN algorithm, accuracy levels are examined by changing the ‘k’ parameter.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphologic based feature extraction for arrhythmia beat detection\",\"authors\":\"Merve Dogruyol Basar, Soner Kotan, N. Kiliç, A. Akan\",\"doi\":\"10.1109/TIPTEKNO.2016.7863065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is one of the diseases which has highest mortality rate recently. Heart's electrical activity examination and interpretation are very important for the understanding of diseases. In this study, electrocardiogram signals are analyzed, then patient's healthy and arrhythmia beats are extracted. RR, QRS, Skewness and Linear Predictive Coding coefficients of the signals are considered for classification of the data. K-NN, Random SubSpaces, Naive Bayes and K-Star classifiers are used. The highest accuracy is obtained with the K-NN algorithm (98.32%). At the second stage of the K-NN algorithm, accuracy levels are examined by changing the ‘k’ parameter.\",\"PeriodicalId\":431660,\"journal\":{\"name\":\"2016 Medical Technologies National Congress (TIPTEKNO)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Medical Technologies National Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO.2016.7863065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心脏病是近年来死亡率最高的疾病之一。心电活动的检查和解释对疾病的认识是非常重要的。本研究通过对心电图信号进行分析,提取患者的健康和心律失常的心跳。考虑信号的RR、QRS、Skewness和Linear Predictive Coding系数对数据进行分类。使用K-NN、随机子空间、朴素贝叶斯和K-Star分类器。K-NN算法的准确率最高(98.32%)。在k - nn算法的第二阶段,通过改变“k”参数来检查准确率水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphologic based feature extraction for arrhythmia beat detection
Heart disease is one of the diseases which has highest mortality rate recently. Heart's electrical activity examination and interpretation are very important for the understanding of diseases. In this study, electrocardiogram signals are analyzed, then patient's healthy and arrhythmia beats are extracted. RR, QRS, Skewness and Linear Predictive Coding coefficients of the signals are considered for classification of the data. K-NN, Random SubSpaces, Naive Bayes and K-Star classifiers are used. The highest accuracy is obtained with the K-NN algorithm (98.32%). At the second stage of the K-NN algorithm, accuracy levels are examined by changing the ‘k’ parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of prosthetic hand simulator Development of clinical engineering units and evaluation of the organization in public hospitals Fractal dimension analysis of cerebellar grey matter in patients with Chiary Malformation type-I Surgical operation simulation based on virtual reality Design of coils driven by pulsed electromagnetic field generator and the effect of wound healing in rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1